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Dempsey JA, Xie A, Patz DS, Wang D. Physiology in medicine: obstructive
sleep apnea pathogenesis and treatment—considerations beyond airway ana-
tomy. J Appl Physiol 116: 3–12, 2014. First published November 7, 2013;
doi:10.1152/japplphysiol.01054.2013.—We review evidence in support of signifi-
cant contributions to the pathogenesis of obstructive sleep apnea (OSA) from
pathophysiological factors beyond the well-accepted importance of airway anat-
omy. Emphasis is placed on contributions from neurochemical control of central
respiratory motor output through its effects on output stability, upper airway dilator
muscle activation, and arousability. In turn, we consider the evidence demonstrat-
ing effective treatment of OSA via approaches that address each of these patho-
physiologic risk factors. Finally, a case is made for combining treatments aimed at
both anatomical and ventilatory control system deficiencies and for individualizing
treatment to address a patient’s own specific risk factors.
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OBSTRUCTIVE SLEEP APNEA (OSA) includes repetitive hypop-
neas, cyclical apneas, excessive hypoventilation, or a com-
bination of these, induced via pharyngeal collapse to the
point of ventilatory constraint (see Fig. 1A). Accordingly,
the common clinical perspective is to view OSA as an
exclusive problem of airway anatomy and to prescribe
continuous positive airway pressure (CPAP) treatment. This
approach has been highly successful in many patients. In
this essay we review accumulating evidence in support of a
broader view of OSA pathogenesis that incorporates an
important contribution from central respiratory motor output
and the need to consider key individual differences among
patients. This concept is of considerable practical impor-
tance for purposes of treatment options, given the large
number of patients with OSA who are unable to tolerate
CPAP or who greatly underutilize it (84). The cardiovascu-
lar, behavioral, and cognitive consequences of OSA are too
severe (11) not to have several viable patient-compatible
treatment options tailored to key pathophysiologic and an-
atomic characteristics of the individual patient with OSA.

Sleep-Induced Propensity for Cyclical Airway Obstruction

Two fundamental sleep-induced changes underlie OSA:
1) in marked changes in the passive mechanics of the upper
airway, 2) in the critical reliance on chemosensitivity for
control of respiratory motor output and its stability. First,

the onset of the sleeping state results in a reduced tonic
activation of upper airway dilator musculature leading to
increased airway compliance and an enhanced collapsibility.
This occurs in all humans. However, this sleep effect is
especially problematic for a patient with OSA whose airway
is narrower, longer, and more collapsible than that of some-
one without apnea, and who critically relies on compensa-
tory activation of airway dilator muscles to maintain pa-
tency during wakefulness. The reduced lung volume in an
obese recumbent patient during sleep also reduces caudal
traction on the trachea, which adds significantly to the
skeletal and soft tissue features promoting pharyngeal col-
lapse (4, 76). Humans vary considerably in the pressure
required inside the relaxed airway to close the passive upper
airway (i.e., Pcrit1) during sleep; nonapneics require sub-
stantial negative suction pressures for closure, whereas most
patients with OSA do not require generation of negative
airway pressure to experience airway closure (32, 71).

Second, the loss of wakefulness removes an important
vigilance component in the ventilatory control system, leav-
ing the regulation of central respiratory motor output largely
under chemoreceptor and mechanoreceptor feedback con-
trol. Non-rapid eye movement (NREM) sleep unmasks a
highly sensitive, hypocapnic-induced apneic threshold.
When PaCO2 is reduced below this threshold, central respi-
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1 Pcrit defines the inherent mechanical properties of the upper airway and its
surrounding tissue. It refers to the critical closing pressure of the airway as
determined using a pressure-controlled system connected to a nasal mask that
is capable of manipulating airway pressure in a step-wise fashion under passive
conditions in the airway during sleep (i.e., without activation of airway muscle
dilators).
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Fig. 1. A: polysomnographic tracings of obstructive sleep apnea from a detailed experimental study of a patient with severe disease (apnea-hypopnea index �
56 events/h). Note the repeated oxygen desaturations as a result of severely impaired (hypopnea) or absent (apnea) airflow despite continual breathing efforts
(Pepi) and the cyclical breathing pattern that ensues as the patient oscillates between sleep and arousal (downward pointing arrows). B: one obstructed apneic
event (between the dotted vertical lines in A) to illustrate the compensatory events occurring during and following the obstruction. The cessation and resumption
of flow defines the apneic event. Note the progressive increase in inspiratory effort (Pepi) and dilator muscle EMG (EMGgg) during the apnea, the transient
arousal coincident with airway opening, and ventilatory overshoot at apnea termination. As the patient returns to sleep, note the gradual reduction in breathing
frequency and flow rate, and increased pharyngeal pressure (signifying increased airway resistance) leading to the next obstruction. Evidence of snoring is shown
on the flow tracing. Progressive increases in EMGgg activity occurred throughout the obstructive event, although in this instance they were not sufficient to
restore flow, which occurred only upon arousal. Pharyngeal pressure serves as a measure of the inspiratory effort made against the obstructed airway, thereby
reflecting the magnitude of central respiratory motor output in response to chemoreceptor stimuli accumulated during the obstructed apnea. Arousal threshold
is determined by the pharyngeal pressure achieved through respiratory pump muscle contractions during an airway obstruction at the point of EEG arousal.
EMGgg, electromyogram of the genioglossus muscle (intramuscular); EMGsub, EMG of the submental muscle (surface); EEG, electroencephalogram (C3-A2);
Pepi, pressure at the level of the epiglottis; Flow, airflow measured via nasal mask and pneumotachograph; SaO2, arterial blood oxygen saturation measured via
pulse oximetry at the finger. Reprinted with permission of the American Thoracic Society. Copyright © 2013 American Thoracic Society. Eckert DJ and Malhotra
A. 2008. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5: 144–153. Official Journal of the American Thoracic Society.
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ratory motor output ceases and apnea ensues until PaCO2

rises sufficiently (usually to a few mmHg greater than that
during spontaneous eupnea) to restart respiratory rhythm.
Thus central apneas or hypopneas commonly occur follow-
ing a brief ventilatory overshoot, whether this overshoot is
elicited experimentally and passively by positive pressure
assisted mechanical ventilation (48, 90), or actively, by the
brief periods of hyperventilation that follow termination of
obstructive apneas (31) (also see Fig. 1, A and B). These
actively induced ventilatory overshoots are caused by both
the accumulation of chemical stimuli to breathe during an
obstructed apnea and the potentiation of this stimulatory
effect when a transient cortical arousal terminates an ob-
struction. Immediately following these brief periods of
chemoreceptor stimulation the level of central respiratory
motor output to both the chest wall and upper airway dilator
muscle motor neurons is determined by the balance struck
between two opposing forces. 1) A continued short-term
potentiation (after-discharge) of central respiratory drive
that lingers immediately following removal of the chemo-
receptor stimuli, thereby providing a stabilizing influence on
breathing; vs. 2) inhibitory feedback effects from transient
hypocapnia and lung inflation, which are unmasked during
NREM sleep (1, 17). A case has been made for the contri-
butions of interactive effects between carotid and medullary
chemoreceptors (52, 73), possibly in combination with in-
hibitory feedback effects from lung stretch (8) in mediating
these central instabilities and apneas that follow transient
ventilatory overshoots.

The occurrence of central apneas, or hypopneas, or both
with repeated, cyclical periods of over- and underventilation
during sleep varies markedly among and within individuals
(10, 36, 94). This tendency toward instability depends on the
respiratory control system’s loop gain, an engineering term
defining the gain of the negative feedback loop that regu-
lates how ventilation responds to disturbances in ventilation
and the accompanying disruptions in arterial blood gases.
The higher the loop gain the greater the tendency for
ventilatory instability in response to a disturbance. In turn,
loop gain is determined primarily by two components,
chemosensitive gain and plant gain.2 High chemoreceptor
gains promote instability because of 1) a greater ventilatory
overshoot in response to CO2 accumulation and 2) a greater
ventilatory undershoot in response to hypocapnia. Individ-
ual differences in arousability and their effects on sleep state
stability also importantly contribute to chemosensitivity and
ventilatory stability. A high plant gain promotes apnea
because only small transient increases in ventilatory over-
shoots are required to lower PaCO2 to the apneic threshold.

In summary, it appears that two fundamental effects of sleep
are relevant to OSA pathogenesis; namely, increased airway
collapsibility, and enhanced potential for ventilatory control
system instability. Individual differences in ventilatory stability
are dependent upon sleep state and the sensitivity with which
the control system responds to transient disruptions in venti-
lation and chemoreceptor stimuli. We now consider evidence
concerning how these influences might be linked to cause OSA
in a sleeping human.

Links Between Central Respiratory Motor Output Instability
and Cyclical Airway Obstruction

Several types of evidence implicate nonanatomical factors as
important determinants of OSA. First, central respiratory motor
output almost simultaneously engages both the phrenic motor
neurons (serving chest wall pump muscles) and hypoglossal
motor neurons (serving pharyngeal muscle dilators) (25, 28).
CO2-induced chemoreceptor drive elicits a linear recruitment
of diaphragmatic electromyographic (EMG) activity as op-
posed to a nonlinear response of genioglossus airway dilator
muscle EMG activity in animals and humans (25, 28, 41, 60).
Second, the compliance and/or Pcrit of the passive upper
airway [i.e., in an anesthetized, paralyzed (32), or sleeping
human (15)] shows substantial overlap between patients with
OSA and controls (32). Accordingly, correlational analysis
shows that variations in passive Pcrit, by itself, account for
only a very small portion of variations in the apnea-hypop-
nea index (AHI) (93).

Third, there is no precise boundary between central and
obstructed apneas. For example, it has been known for some
time that CPAP treatment or tracheostomy unmasks an
underlying ventilatory instability and periodicity in many
patients with OSA (55, 79). Airway imaging studies during
sleep also show substantial airway narrowing and even
collapse to occur during hypocapnic-induced central apnea
(see Fig. 2A), often producing cyclical, so-called mixed
apneas (see Fig. 2B). Similarly, in selected patients with
OSA and collapsible airways (Pcrit �0) combined with high
chemosensitivity, cyclical obstructions were commonly pre-
ceded by transient ventilatory overshoots and hypocapnia
(see Fig. 3A). When the transient hypocapnic periods were
prevented and normocapnia was maintained (via selective
small increases in FICO2 limited to the hyperpneic phase),
most of the cyclical obstructions were also prevented (see
Fig. 3B) (92). Conversely, if central ventilatory instabilities
were superimposed (using brief hypoxic exposure) during
sleep in snoring subjects with high upper airway resistance,
complete airway obstructions occurred at the nadir of the
oscillating drive to breathe (30, 83). Additional clinical
examples of patients with OSA and mixtures of obstructive
and central events include those living (57) or traveling
to high altitudes (54) and those with collapsible airways
who have developed heart disease or require narcotic med-
ication (35).

OSA Pathogenesis

Two types of clinical observations underscore the impor-
tance of the interactions between airway anatomy and neu-

2 Chemosensitive gain is defined by the slope of the ventilatory response to
hypercapnia and hypocapnia (i.e., �V̇E/�PaCO2). Plant gain is determined by
the magnitude of the reduction in PaCO2 resulting from a given change in
ventilation (�PaCO2/�V̇E); that is, the efficiency with which CO2 is eliminated.
These concepts and their effects on ventilatory stability and the apneic
threshold may be more readily appreciated when presented in graphical form
[see (10) and (88)].

Review

5OSA Pathogenesis and Treatment—Beyond Airway Anatomy • Dempsey JA et al.

J Appl Physiol • doi:10.1152/japplphysiol.01054.2013 • www.jappl.org

 by 10.220.33.1 on D
ecem

ber 21, 2016
http://jap.physiology.org/

D
ow

nloaded from
 

http://jap.physiology.org/


rochemical ventilatory control as determinants of OSA. On
the one hand, although cyclical obstructions terminated
by arousals are common, many patients with highly collaps-
ible airways (positive Pcrit) maintain airway patency for
significant periods of time during sleep without experienc-
ing repeated cyclical obstructions or transient arousals (87,
93, 95). On the other hand, patients with mildly collapsible
or even negative Pcrit but with high chemoreceptor gains
experience periods of increased airway resistance and some-
times even airway closure with a high AHI (13, 87, 93, 95).

We present two overlapping scenarios in Figure 4 for the
pathogenesis of cyclical OSA, primarily on the basis of
influences of airway collapsibility combined with neuro-

chemical influences over pharyngeal dilators and respiratory
pump musculature, and on sleep state stability. As outlined
in Fig. 4, right, a patient with a highly collapsible airway
(positive Pcrit) will often experience complete airway col-
lapse when the compensatory tonic input to the upper airway
is removed at sleep onset. In Fig. 4, left, a patient with a
high chemosensitivity plus a mildly collapsible airway is
likely to experience airway obstruction at the nadir of the
oscillating central respiratory motor output. In either case,
whether the obstruction is repeated and becomes cyclical
will depend upon how the patient’s respiratory control
system responds to the obstruction, as outlined in Fig. 4,
bottom [also see the obstructed apnea and its aftermath in

Fig. 2. Central apnea preceding obstructive apnea in subjects with a combination of unstable central respiratory motor output plus a collapsible airway. A: effects
of a spontaneous central apnea on upper airway patency during non-rapid eye movement sleep. Fiber optic nasopharyngoscopy was used to determine airway
dimensions at the level of the velopharynx or oropharynx. Initiation of central apnea is identified by the open inverted arrow, with the cessation of both airflow
and oscillation of esophageal pressure (Pes). Complete airway occlusion occurred about 15–20 s following the onset of central apnea and before an inspiratory
effort occurred, as noted by the constant Pes. Apnea continued and the airway remained closed for 35 s, showing partial return of airflow with resumption of
inspiratory effort and then complete airway patency on arousal from sleep with accompanying ventilatory overshoot. [From Badr et al. (3).] B: cyclical, mixed
(i.e., central followed by obstructed) apneas causing intermittent hypoxemia during non-rapid eye movement sleep. The cessation of airflow denotes the onset
of apnea. The absence of cyclical changes in esophageal pressure over the initial 8 to 10 s of the apnea demonstrate that this initial phase of the apnea is due
to the absence of central respiratory motor output and inspiratory muscle contractions. Over the latter half of the apnea, flow is still absent but progressive, cyclical
increments occur in the negativity of esophageal pressure, indicating increasing inspiratory efforts against a closed airway in response to rising asphyxic
chemoreceptor stimuli. The arrows shown at the termination of each apneic period indicate periods of transient cortical arousal accompanied by ventilatory
overshoot. [From Dempsey et al. (11).]
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Fig. 1B, from Eckert et al. (13)]. The key ingredients to
regaining respiratory stability are the ability to recruit air-
way muscle dilators and to effectively open the airway to
restore air flow prior to arousal, because the transient
arousal accentuates the ventilatory overshoot and hypocap-
nia, leading to subsequent hypopneas, apneas, and obstruc-
tions. Accordingly, how the chemoreceptor control system
and the airway dilator musculature responds to accumulat-
ing CO2 and arterial HbO2 desaturation during the apnea, as
well as the sensitivity of a patient’s arousal threshold, will
determine whether initial obstructive events are followed by
stable breathing, slow evolving hypopneas with occasional
arousals, or repetitive obstructions (94).

A few recent reports each using substantial numbers of
patients with OSA have documented that more than 80% of
patients with moderate to severe OSA have a highly col-
lapsible airway (passive Pcrit �2 to �5 cmH2O), but
30 – 40% of these patients also have either high chemosen-
sitivity, sensitive arousal thresholds, or sluggish responsive-
ness of upper airway dilators to chemical stimuli (15, 16,
87). These patients were all undergoing CPAP treatment,
which after several months had been shown to reduce
chemosensitivity (42, 80), widen the CO2 reserve below
eupnea (65), increase arousal threshold (42), and improve
the sensitivity of protective reflexes for upper airway pa-
tency in response to negative pressures (50). Studies in
patients with newly diagnosed, untreated OSA revealed that
more than half had enhanced chemoreceptor gain and nar-
rowed CO2 reserve below eupnea, and almost all patients
had a Pcrit in the �2 to �6 cmH2O range (92).

In summary, accumulating evidence points to several links
between the regulation of central respiratory motor output and
pharyngeal patency. For example, increasing or decreasing
central instability in many patients with inherently collapsible
airways will, respectively, exacerbate or reduce airway ob-
structions. Finally, whether an airway obstruction precipitates
further cyclical obstructions critically depends on how airway
dilator muscles, respiratory pump muscles, and sleep state
respond to the apneic-induced accumulation of chemoreceptor
stimuli. Finally, recent surveys reveal that nonanatomical risk
factors for cyclical obstruction, including high loop gain,
sensitive arousability, and nonresponsive airway dilator mus-
culature are present in significant numbers of patients with
OSA. These findings have implications for alternative, individ-
ualized treatments for OSA.

Assessment of Nonanatomical Risk Factors

Characterization of nonanatomical risk factors for OSA in
individual patients has included several different approaches in
recent years. For loop gain assessment, approaches have in-
cluded 1) CPAP manipulation to determine the ratio of venti-
latory decline (achieved via reduced CPAP pressure) to venti-
latory response (achieved upon abrupt restoration of pressure
to the point of airway patency) (85); 2) the ventilatory response
to exogenous inspired CO2 in wakefulness using a pseudoran-
dom binary CO2 delivery method (20); or 3) progressive
increases in tidal volume via assisted mechanical ventilation
during sleep to determine the hypocapnic-induced apneic

Fig. 3. A: polysomnographic recording from a patient with severe OSA [apnea-hypopnea index(AHI) �60/h] during air breathing. Cyclical obstructive
apneas were indicated by the absence of flow despite continued respiratory efforts and the paradoxical motions of rib cage and abdomen. B: most of the
obstructed apneas were prevented in this patient when a selective rebreathe mask-reservoir system was used to raise FICO2 only during the hyperpneic
phase of an event, thereby preventing the transient hypocapnia and holding PETCO2 at levels experienced equal to those during stable eupneic air breathing
(not shown). The 4-min periods shown for both control (A) and isocapnic treatment (B) conditions were representative of the breathing pattern, PETCO2,
and AHI experienced during the total 90- to 95-min periods of control and treatment conditions studied in this patient. A reduction in AHI of 30 to 90%
with this isocapnic treatment was observed in 14 of 26 patients with moderate to severe OSA and Pcrit of �2 to �5 cmH2O. AB, abdominal movement;
RC, rib cage movement. [From Xie et al. (92).]

Review

7OSA Pathogenesis and Treatment—Beyond Airway Anatomy • Dempsey JA et al.

J Appl Physiol • doi:10.1152/japplphysiol.01054.2013 • www.jappl.org

 by 10.220.33.1 on D
ecem

ber 21, 2016
http://jap.physiology.org/

D
ow

nloaded from
 

http://jap.physiology.org/


threshold, thereby allowing calculation of chemosensitivity to
CO2 below eupnea, plant gain, and the CO2 reserve (�PETCO2

between eupnea and the apneic threshold) (90). These methods
are time consuming and are primarily research tools. There
may also be strong indicators of important apnea-causing
characteristics contained in a patient’s routine polysomnogram,
such as the occurrence of multiple central or mixed apneas, or
repetitive cycles of periodic breathing with similar durations
(see Fig. 2B), as markers of high loop gain. Also, the occur-
rence of only minor O2 desaturations preceding transient arous-
als may signify a sensitive arousal threshold. The unmasking of
cyclical central apneas or hypopneas during the CPAP trial is
also a significant indicator of a high gain, unstable control
system (79). Mathematical models to predict loop gain on the
basis of a patient’s spontaneous periodic pattern as measured in

a routine polysomnogram have been proposed (46, 67), but to
date these have had significant limitations, such as the need for
strict sinusoidal periodic patterns of breathing, which are
prevalent in conditions such as heart failure but rare in OSA.

Recently, Wellman et al. (86) proposed the manipulation of
CPAP pressures to determine loop gain, arousal threshold, and
response of the upper airway dilators to increased ventilatory
drive, all achieved noninvasively within a single night of study
requiring only the standard equipment used for routine poly-
somnograms. Some type of combination of the latter approach
using CPAP manipulation with mathematical modeling may
eventually provide a usable clinical tool for patient character-
ization for purposes of individualizing treatment (see Treat-
ment Implications).

Treatment Implications

Given that several nonanatomical determinants of cyclical
airway obstruction are prevalent in many patients with OSA,
that appropriate CPAP therapy is not acceptable to about
one-half of patients diagnosed with OSA, and that oral appli-
ances and surgical therapies are not always effective, alterna-
tive therapies or combinations of therapies are needed and
preferably tailored to the specific risk factors of a patient. Most
recently, three types of nonanatomical treatments have been
attempted in fairly sizable groups of patients with moderate to
severe OSA. These therapies include reducing loop gain to
stabilize central respiratory motor output, raising the arousal
threshold, and recruiting airway dilator muscle tone.

Reducing chemoreflex/plant gain effects on both central and
obstructive events. The carbonic anhydrase inhibitor acetazol-
amide stimulates ventilation via a mild systemic metabolic
acidosis, thereby reducing plant gain with little or no increase
in CO2 chemosensitivity. As might be expected, this treatment
was highly effective in reducing most central apneas and
periodicities in patients with heart failure and Cheyne-Stokes
respiration (33) and in normal subjects at high altitude (75).
Even with mild to severe OSA, 1 wk of acetazolamide treat-
ment reduced AHI by more than one-third in about half of a
group of 13 patients, and this effect was attributable solely to
a reduced plant gain (achieved via the accompanying steady
state hyperventilation and reduced PaCO2) with no effect on
chemoreflex gain, pharyngeal collapsibility (Pcrit), or arousal
threshold (16). Administering oxygen (via nasal cannula) suf-
ficient to maintain HbO2 saturation in the 95–98% range will
reduce chemosensitivity to CO2, widen the CO2 reserve be-
tween eupnea and the apneic threshold (51, 91), and reduce
AHI in many patients with chronic heart failure and Cheyne-
Stokes type periodic breathing and central apneas (19, 23, 34,
44)3. Hyperoxia was also effective in significantly decreasing
AHI in a minority of patients with OSA, especially those with
already elevated chemoreceptor gain (88, 92). On the other
hand, prolonged apnea lengths and some cases of increased
obstructive events have also been reported with the use of
hyperoxia (19, 29, 88).

3 Patients with chronic heart failure and periodic breathing during NREM
sleep have been shown to have high chemosensitivity, reduced CO2 reserve,
increased circulation time, impaired cerebrovascular reactivity (to CO2), in-
creased pulmonary vascular pressure, or a combination of these, all of which
will contribute to unstable respiratory control (35).

Fig. 4. Schematic illustrating the interaction of airway anatomy with neuro-
chemical control on the magnitude and stability of central respiratory motor
output, airway muscle dilator recruitment, and arousability in the pathogenesis
of cyclical OSA. Patients with an anatomical predisposition to pharyngeal
collapse may experience two types of overlapping scenarios leading to cyclical
OSA in sleep. Right: progression initiated by an airway obstruction at sleep
onset in a patient with a severely collapsible upper airway; left: progression to
airway obstruction (at the nadir of the respiratory cycle) initiated by an
unstable central respiratory motor output in a patient with elevated loop gain
and a mildly collapsible airway. Bottom: factors that determine the conse-
quences of airway obstruction and accumulating chemoreceptor stimuli on
subsequent, postapneic ventilation, airway patency and EEG arousal. These
control system characteristics include the responsiveness of both the upper
airway and chest wall pump muscles and of central nervous system (CNS)
arousability to the rising chemoreceptor stimuli (also see the text and the
apneic event shown in Fig. 1B). UAW, upper airway; FRC, functional residual
capacity.
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Intermittent hypoxemia, similar to that attending OSA, en-
hances carotid chemoreceptor sensitivity through increased
expression of angiotensin II type I receptors, and increased
oxidative stress and inflammation. Accordingly, drugs that
block these processes, such as losartan or those with anti-
inflammatory properties will prevent carotid body sensitization
(47, 56, 58, 59, 61). Although these pharmacologic-induced
reductions in CB gain have not yet been tested, they may be
useful in stabilizing central respiratory motor output and re-
ducing cyclical airway obstructions in OSA. Also, clonidine,
an �2-adrenergic agonist, was recently reported to reduce the
slope of the CO2 response below eupnea during NREM,
thereby widening the CO2 reserve in healthy nonapneic sub-
jects (68).

Raising arousal threshold. The rationale for using sedation
as therapy for cyclical OSA is to help maintain sleep state
sufficiently long during an airway obstruction to allow chemo-
receptor stimuli to reach sufficiently high levels to activate
airway dilator muscles and open the airway to restore flow
prior to arousal. This would depress transient arousals and their
accompanying ventilatory overshoots that lead to cyclical ob-
structive apneas (14). This goal of increasing arousal threshold
could also be realized if sedation caused a significant shift in
NREM sleep from lighter to deeper sleep stages, during which
the arousal threshold is significantly increased. On the other
hand, sedative use must avoid an excessive prolongation of
apnea duration or an impairment of dilator muscle recruitment,
leading to severe intermittent hypercapnia and hypoxemia (66).
Indeed, sedative agents such as alcohol and some benzodiaz-
epines (38, 40) will also impair dilator muscle recruitment.
Furthermore, any sedative use should be avoided in patents
with OSA and daytime CO2 retention. To date, in unselected
populations of patients with OSA, sedative medications have
produced mixed AHI results (5, 7, 26, 38, 40, 43, 45, 62, 63,
72, 82). More promising are recent findings in patients with
OSA selected for a very low (i.e., sensitive) arousal threshold
in whom AHI was reduced by 40 –50% with significant
shifts from stage 1 to stage 2 sleep state and improved sleep
quality (14).

Recruitment of upper airway dilators. Substantial progress
has been made in our understanding of the basic neurobiology
of upper airway regulation and specifically the critical role in
sleep-induced muscle atonia played by serotonergic and nor-
adrenergic inputs (11, 18, 22, 27, 39, 74). Unfortunately, this
progress has not yet been translated into successful pharmaco-
therapeutic trials because drugs with either serotoninergic or
noradrenergic effects have proven universally ineffective (6,
24, 37, 64, 69, 81). To date these trials have been statistically
underpowered and no attempt has yet been made (as with
studies on sedatives or loop gain modifiers summarized above)
to identify subsets of patients who might respond. Recently, a
potassium channel blocking compound has elicited major re-
ductions in upper airway collapsibility in an anesthetized pig
model (89), but this has not yet been tested in the sleeping
state, either in animals or humans. Intermittent electrical stim-
ulation of the hypoglossal nerve synchronized to inspiration
using chronically implanted electrodes has recently been
shown to be effective in reducing OSA and was relatively well
tolerated by patients (12).

Another approach is to consider a ventilatory stimulus with
the capability for also effectively recruiting upper airway
dilator muscles. The effect of acetazolamide in reducing AHI
in some patients with OSA may be attributed in part to upper
airway dilator muscle recruitment in addition to its effect on
stabilizing central respiratory motor output by reducing plant
gain (16). Even more effective is the mild hypercapnia
achieved via increased FICO2, which was shown to remove flow
limitation in snorers (2) and even to prevent most cyclical
obstructed apneas in 17 of 21 patients with OSA without
disrupting their sleep state (92) (see Fig. 5). These AHI-
lowering effects of mild hypercapnia occurred in patients with
OSA with a wide range of chemosensitivity and CO2 reserve,
and with highly collapsible airways (Pcrit �2 to �5 cmH2O).
Presumably, the 2 to 5 mmHg increases in PETCO2 achieved
with continuous deadspace rebreathing resulting in an approx-
imately 30–40% increase in V̇E above stable air breathing
control values was sufficient to both stabilize central respira-
tory motor output and effectively recruit upper airway muscle

Fig. 5. Effect of mild hypercapnia in a pa-
tient with OSA. Repetitive obstructive ap-
neas with associated transient arousals were
noted during air breathing as indicated by
the repeated absence of flow despite respira-
tory efforts. Almost all of these obstructions
and arousals were eliminated by raising
PETCO2 an average of 2 mmHg (left arrow)
above stable, nonobstructed breathing levels
in sleep (stable control breathing is not
shown in the figure). Abrupt removal of the
added FICO2 (right arrow) resulted in the
immediate return of the cyclical obstructive
apneas. Respiratory effort was estimated
by respiratory inductance plethysmography.
Data are from the author’s laboratory. On the
basis of these types of findings we raised
PETCO2 2–5 mmHg via dead-space rebreath-
ing during 90–120 min of sleep in a group of
patients with moderate to severe OSA and
observed an average 85% reduction in AHI
below air-breathing control in 17 of 21 pa-
tients (92). PETCO2, end tidal PCO2.
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dilators and prevent cyclical airway obstructions. This range of
hypercapnia and increased ventilatory drive approximates that
estimated by Younes to be sufficient to effectively open the
airway in patients with OSA during an obstructive apnea
without requiring electroencephalographic arousal (94). The
downside of this hypercapnic therapy is the potential side
effects on sleep state stability and sympathetic activation due to
any inadvertent excessive increases in PaCO2, and the challenge
of delivering and monitoring CO2 in a controlled fashion
outside of a laboratory setting. Alternatively, a pharmacologi-
cal approach, as yet undiscovered that might mimic these
beneficial effects of 1–3 mmHg hypercapnia on effectively
recruiting respiratory motor output to both upper airway and
pump muscles without increasing chemosensitivity or arous-
ability, might offer a reasonable approach in most patients with
OSA.

Combined treatments. Combining treatments has been
shown to be effective for some types of central sleep apnea,
especially for residual central instabilities uncovered by CPAP
therapy (9, 21, 77, 78). This approach may also be effective in
OSA. So, for example, use of hyperoxia or acetazolamide to
reduce chemoreflex and plant gain, respectively, may be rela-
tively well tolerated therapies whose effectiveness in OSA
would be markedly enhanced if Pcrit could also be just par-
tially reduced. In turn, these moderate reductions in airway
collapsibility could be obtained with even small reductions in
body weight (70) or with mandibular advancement (53), or by
adjustments in body position to avoid supine sleep or neck
flexion. Thus, although none of the nonanatomic approaches by
themselves might be universally effective in treating patients
with moderate to severe OSA, they may be sufficiently com-
plementary to alternative means of reducing the anatomical
component and be more acceptable to a CPAP-intolerant pa-
tient.

Approaches in addition to CPAP to treat OSA have targeted
three physiologic causes: 1) reducing gains to stabilize respi-
ratory motor output, 2) using sedatives to reduce heightened
arousability, and 3) reducing airway collapsibility via recruit-
ing upper airway muscle dilators. To date these approaches
have produced mixed results, with the most consistent success
achieved when the treatment was tailored to an individual
patient’s specific deficiency, such as a high chemosensitivity or
a low arousal threshold.

Summary

We have considered available evidence that implicates sig-
nificant contributions from neurochemical control of central
respiratory motor output to cyclical OSA through its effects on
output stability, upper airway dilator muscle activation, and
arousability. Using specific therapies to address these nonana-
tomical contributors to OSA has been shown to be effective in
significant numbers of patients with OSA and with high con-
troller and/or plant gains. Limited success has also been met
with the use of sedatives to reduce arousability, at least in
patients with already sensitive arousal thresholds. A challenge
in using these approaches for treatment purposes is to simplify
our ability to recognize the specific risk factors in the OSA
population so that therapy can be individualized. We also need

to continue to explore new agents for reducing loop gain and
arousability and especially for effective stimulation of upper
airway muscle dilators without invoking confounding side
effects on chemoreceptor gain or sleep state continuity, or
excessive sympathetic activation. Given the significant amount
of information available on these problems, the onus is also on
sleep practitioners and especially those leaders in the field
charged with formulating treatment guidelines (49) to seriously
consider the role of alternative therapies tailored to a patient’s
individual relevant characteristics, when encountering a patient
with OSA who is intolerant of CPAP.
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