

Surveillance, Risk Prediction and Preventing Progression in Chronic Kidney Disease

Paul Komenda MD, FRCPC, MHA, CHE

Associate Professor of Medicine University of Manitoba Research and Home Hemodialysis Director Seven Oaks General Hospital

Conflict of Interest

Advisory Boards: Otsuka, Alexion, NxStage Grants: CIHR, Baxter, Health Canada

No direct conflicts on anything discussed today

Overview

Discuss the epidemiology of chronic kidney disease in Manitoba To understand the science of risk prediction in CKD: aligning treatment and resource allocation Discuss ongoing initiatives in Manitoba to reach vulnerable First Nations \bullet at high risk of kidney failure Propose a model for comprehensive CKD surveillance

DEFINITIONS: CHRONIC KIDNEY DISEASE (CKD) **KIDNEY FAILURE (KF)**

CKD:

Abnormal structure or function >3 months

EPIDEMIOLOGYOF

A CHRONIC KIDNEY

DISEASE

- Proteinuria, Hematuria
- eGFR <60 ml/min/m²

KF (End Stage):

- Requiring kidney replacement therapy >3 months
- Facility Hemodialysis
- Home PD or HD •
- **Kidney Transplantation**

ORIGINAL ARTICLE

Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization

Alan S. Go, M.D., Glenn M. Chertow, M.D., M.P.H., Dongjie Fan, M.S.P.H., Charles E. McCulloch, Ph.D., and Chi-yuan Hsu, M.D.

CAISER

Mortality and Cardiovascular Events Are STRONGLY related to eGFR

1.2 million outpatients with eGFR over 3 years

Manitoba Renal Program: Quick Stats

Projected Number of Manitobans with ESKD to 2024

Secular trends in end-stage renal disease requiring dialysis in Manitoba, Canada: a population-based study

Paul Komenda MD MHA, Nancy Yu PhD, Stella Leung MSc, Keevin Bernstein MD, James Blanchard PhD, Manish Sood MD, Claudio Rigatto MD MSc, Navdeep Tangri MD PhD

Research

Manitoba Risk Factors

CKD Deliverable MCHP

The Cost Effectiveness of Primary Screening for Chronic Kidney Disease: A Systematic Review (Under Review, AJKD 2013)

- A screening strategy targeting high risk individuals, in diabetic or hypertensive populations, is a cost-effective intervention under all assumptions.
- CKD screening in the general population may be cost-effective if a higher prevalence of CKD is present, rapid progressors can be identified and aggressive treatment with RAAS inhibitors reduces the risk of non-renal events.

Ferguson T, Komenda P, Tangri N, Rigatto C, et al.

Chronic Kidney Disease

Kidney Failure

	Stage 1
	Normal kidney function
	with risk factors
	(measured by GFR*,
	blood & urine tests)
90	Stage 2
	Declining GFR to
	$60 \text{ml/min}/1.73 \text{m}^2$
(min)	(mild kidney damage)
te (ml	Stage 3
l Ra	CER: 30 = 60 m/
tior	$min/1.73m^2$
ltra	(moderate kidney
ılar Fi	damage)
omeri 30	Since 4
9	anges a
	GFR below 30 ml/
	min/1./3m ²
	(severe kidney damage)
15	
	GFR below 15 ml/
	min/1.73m ²
	(kidney failure)

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

C

VOLUME 3 | ISSUE 1 | JANUARY 2013 http://www.kidney-international.org

NEW STAGING SYSTEM

				Persistent albuminuria categories Description and range					
Р	roano	sis of CKD by GFB		A1	A2	A3			
an	d Albu	minuria Categories: (DIGO 2012		Normal to mildly increased	Moderately increased	Severely increased			
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol			
(G1	Normal or high	≥90						
ange	G2	Mildly decreased	60-89						
Description and r	G3a	Mildly to moderately decreased	45-59						
	G3b	Moderately to severely decreased	30-44						
	G4	Severely decreased	15-29						
	G5	Kidney failure	<15						

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Kidney Failure Risk Equation

9:02 PM	* 37 % 🗉			
idney Failure Risk Equation (2011)	1			
Results				
Risk of progression to kidney failure requiring dialysis or transplantation				
Over 2-Years:				
17.3 %				
Over 5-Years:				
46.6 %				
For patients with CKD Stage 4, we consider a 2-year risk of kidney failure of 0-10 % as low risk, 10-20 % as intermediate risk and > 20 % as high risk				
	902 PM idney Failure Risk Equation (2011) Results Risk of progression to kidney failure requiring dialysis or transplantation Over 2-Years: 17.3 % Over 5-Years: 46.6 % For patients with CKD Stage 4, we consider a 2-year risk of kidney failure of 0-10 % as low risk, 10-20 % as intermediate risk and > 20 % as high risk			

The Journal of the American Medical Association

Tangri et al. 2011

Risk-Based Teams Approach

Low Risk Patients

Team:

Primary care
provider

Focus:

- Lifestyle
- blood pressure

Medium Risk Patients

Team:

- Primary Care providers
- Kidney specialist

Focus:

- Diagnosis
- Lifestyle
- Blood pressure
- Protein leak reduction

Resource allocation aligned with RISK

High Risk Patients

<u>Team:</u> Multidisciplinary Kidney Health Clinic

- Primary care provider*
- Kidney specialist
- Kidney Nurse
- Kidney Dietitian
- Kidney Pharmacist
- Kidney Social worker

Focus:

- Healthy Lifestyle
- Reduction of blood pressure
- Reduction of protein leak in the urine
- Treat consequences of low kidney function
- Treat related heart and diabetic diseases

ODDS RATIO OF KDIGO CKD STAGE

(FINISHED vs. General Population Derived from NHANES cohort)

			Persistent Albuminruia				
			A1		A2	A3	
			Optimal to	high-normal	High	very high to nephrotic	
			<10	10-29	30-299	>300	
	G1a	>105	0.94	3.58	5.31	8.59	
	G1b	90-104	0.50	1.36	2.69	6.54	
	G2a	75-89	0.42	1.24	1.25	3.68	
GER	G2b	60-74	0.42	0.75	1.57	4.50	
GIK	G3a	45-59	0.45	1.06	0.70	1.23	
	G3b	30-44	0.41	1.64	1.36	4.91	
	G4	15-29	N/A	N/A	N/A	3.27	
	G5	<15	N/A	N/A	N/A	N/A	

RESEARCH ARTICLE

An Economic Assessment Model of Rural and Remote Satellite Hemodialysis Units

Thomas W. Ferguson², James Zacharias^{1,2}, Simon R. Walker¹, David Collister¹, Claudio Rigatto¹, Navdeep Tangri^{1,2}, Paul Komenda¹*

	Facility HD	Unit O	Unit H	Unit C	Unit I	Unit F	Unit K
Dialysis Machinery Costs	\$1,551	\$2,909	\$4,296	\$3,878	\$4,654	\$4,072	\$4,654
Consumables and Peripherals Expenses	\$5,982	\$6,582	\$6,582	\$6,582	\$6,582	\$6,582	\$6,582
Human Resource Expenses—Salaries and Wages	\$13,380	\$33,208	\$34,352	\$49,671	\$30,667	\$63,719	\$43,266
Human Resource Expenses—Benefits	Included	\$4,492	\$4,647	\$6,719	\$4,148	\$8,619	\$5,853
Medical Equipment Costs	\$423	\$772	\$1,598	\$1,155	\$1,426	\$2,964	\$1,006
Renal Medication Expenses	\$7,938	\$7,938	\$7,938	\$7,938	\$7,938	\$7,938	\$7,938
Dialysis-Related Laboratory Expenses	\$1,163	\$1,163	\$1,163	\$1,163	\$1,163	\$1,163	\$1,163
Facility Costs	\$11,534	\$11,534	\$11,534	\$11,534	\$11,534	\$11,534	\$11,534
Capital Costs	N/A	\$3,790	\$19,604	\$5,669	\$17,502	\$36,364	\$8,231
Dialysis Transportation Expenses	\$1,751	\$1,751	\$1,751	\$1,751	\$1,751	\$1,751	\$65,910
Return to Tertiary Care Centre Expenses	N/A	\$19,090	\$4,827	\$23,470	\$45,130	\$35,293	\$37,365
Costs of Using Dialysis Facility in Tertiary Care Centre	N/A	\$2,018	\$477	\$2,918	\$7,995	\$8,987	\$6,689
Hospitalization-Related Expenses	\$4,917	\$4,917	\$4,917	\$4,917	\$4,917	\$4,917	\$4,917
Nephrologist and Physician Costs	\$7,792	\$11,778	\$11,778	\$11,778	\$11,778	\$11,778	\$11,778
Total Annual, Per-Patient Cost	\$56,431	\$111,941	\$115,463	\$139,143	\$157,185	\$205,681	\$216,885

Table 3. Cost Model-Average Annual Per-Patient Cost in Communities Accessible by Air.

August 18, 2015

Cost Effectiveness

Variable	Incremental Cost (\$C)	Incremental QALYs	Cost/QALY				
Baseline	850	0.0254	33,500				
Threshold for relative risk reduction afford by treatment extended to patients with microalbuminuria (urine ACR > 30 m/g) (Baseline urine ACR threshold of > 300 mg/g)							
All communities	176	0.0657	2,680				
Road access	-360	0.0903	Dominant				
Air access	556	0.0469	11,870				
Increase in home modality uptake							
Increased PD and HHD use by 25%	349	0.0254	13,760				
Increased PD and HHD use by 50%	-218	0.0254	Dominant				
Increased PD and HHD use by 100%	-1170	0.0254	Dominant				

Convention: New interventions funded at \$50,000/QALY (or 2-3x GDP)

Medical Therapy for DN

- Metabolic Control (glucose and lipids)
- Blood Pressure Control
- Anti-albuminuric agents (RAAS blockade)
- Novel Agents:
 - Endothelin receptor antagonists
 - Sodium glucose transporter 2 inhibitors
 - Mineralocorticoid receptor antagonists

Angll and ET-1 Glomerular Hemodynamics Afferent Arteriole NON-HEMODYNAMIC Increased collagen syntheses, mesangial Proximal Bowman's Capsule expansion, fibrosis **Convoluted Tubule** Glomerulus **GFR** Angiotensin II **Efferent Arteriole ET-1** vasoconstricts vasoconstricts

ONTARGET – Renal Outcomes

- Primary Outcome:
 - dialysis, doubling of serum creatinine, and death
 - Pre-specified analysis
- Combination HR 1.09 (1.01-1.18) for primary outcome (graph) despite reduction in proteinuria

Mann et al. Lancet. 2008 Aug 16;372(9638):547-53.

RAAS & ET-1 Renal Pathophysiology

- ET-1 acts on ET_AR and $ET_{R}R.$
 - A receptors vasoconstrict
 - B receptors vasodilate
- Endothelin system is upregulated in diabetes

•

٠

- **ET**_A**R** blockade likely dilates efferent arteriole. reducing glomerular hypertension, but may also have direct effects on podocyte signalling
- Can block this by ETconverting enzyme inhibitors (ECE inhibitors) or by ERBs specific for A receptors

Endothelin Antagonists

- Avosentan selective ET_AR agonist (50:1)
 - Trial prematurely terminated due to excess fluid retention and CV risk
 - B receptor activation causes vasodilation, Na retention, and fluid overload
- Atrasentan selective ET_AR antagonist
 1800:1 selectivity for ET_AR vs ET_BR

Atrasentan + ACEi/ARB

- •
- RCT, double-blind placebo controlled trial in N=89 with DN, GFR>20 already on stable dose of ACEi/ARB N=89 with DN, GFR>20
- Followed for 8 weeks
- Atra lowered ACR independent of lowered BP
 - ET_AR -mediated vasoconstriction likely contributes to CKD hypertension

(Study Of Diabetic Nephropathy With Atrasentan)

Sodium glucose transporter 2 inhibitors

ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman, M.D., Christoph Wanner, M.D., John M. Lachin, Sc.D.,

Conclusions

- Screen with urine ACR and eGFR
- Screen HTN, DM2, CVD, and all First Nations patients
- Additional pathologic processes must be inhibited to slow progress of CKD.

Optimizing Screening and Surveillance remain our best chance at prevention!