

Stress Testing And Nuclear Imaging Reports Translated

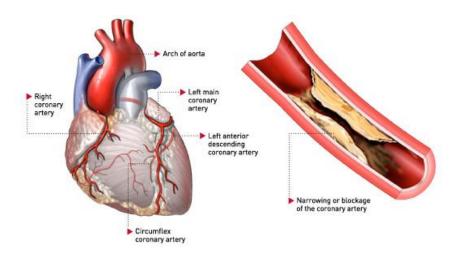
Cardiology Day

September 29, 2017

Francisco J. Cordova Perez, MD, FACC

Conflict of Interest Disclosure

Stress Testing And Nuclear Imaging Reports Translated


Francisco J. Cordova Perez, MD, FACC

- Consultant for: None.
- Speaker for: None.
- Received grant/research support from: None.
- Received honoraria from: None.

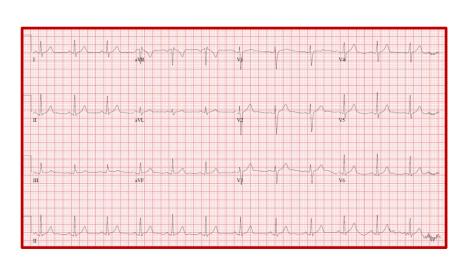
Objectives

- Review how to read and interpret reports of the following non-invasive diagnostic studies:
 - Graded exercise tolerance test (GXT or ETT)
 - Myocardial perfusion imaging study (MPI or "MIBI")
 - Multigated acquisition scan (MUGA)

GXT diagnostic accuracy in suspected CAD

85% MAPHR MAPHR = 220- Age

- •GXT sensitivity ~67%
- •GXT specificity ~70%
- •The predictive value of the GXT increases with the more positive the exercise test result


GXT additional prognostic value

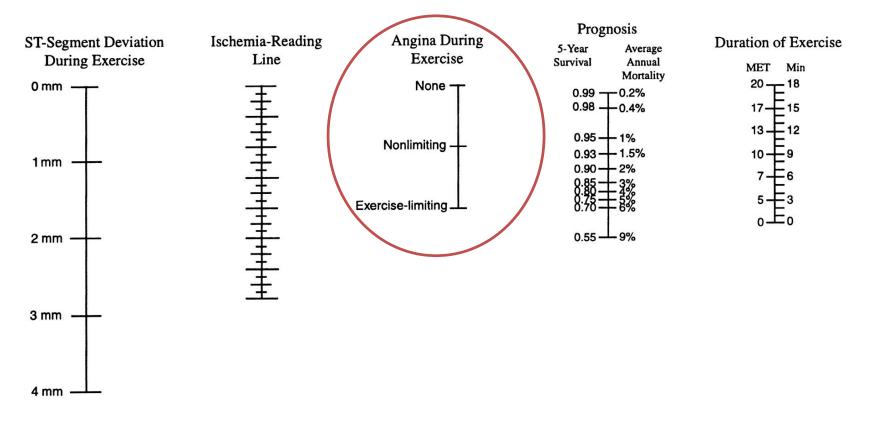
- Variables measured during GXT that predict outcome (indicators of general fitness and function of the autonomic nervous system):
 - Exercise duration
 - Functional class
 - BP response to exercise
 - HR response to exercise
 - HR recovery after exercise
 - Ventricular ectopy & arrhythmias

"You have a rare condition called 'good health'. Frankly, I'm not sure how to treat it."

- 55-year old-man with right sided CP with exertion and relieved by rest
- ECG showed normal sinus rhythm, normal ECG
- You ordered a GXT
- You receive the GXT report....

The GXT Report

Clinical Da		
Myocardial Infa	arction Angina Atypical Angina Non-anginal Chest Pain Other	
Medications:	Nitrates ☐ ß Blocker ☐ Ca++ Blocker ☐ Digoxin ☐ Diuretic ☐ ACE Inhibitor ☐ Other	
100000	Graded Exercise Test	
Protocol:	Bruce Modified Bruce Naughton Upright Bicycle Persantine Dobutamine	
Target Heart F		
Time - Loa		Symptoms and Arrhythmia
Rest Supine _		
Kest Supilie _		
	DP:	
*ST slope: H	H = Horizontal; D = Downsloping; SU = Slow Upslope; RU = Rapid Upslope; E = Elevation	
Reason for Te		
Chest Pain	Fatigue ☐ Leg Discomfort ☐ Dyspnea ☐ Dizziness ☐ ST Changes ☐ Arrhythmia ☐ Hypotension ☐	」 Other □
Test Repo	ort	
	Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	
Heart Rate Re	esponse: Normal Low	
	re Response: Normal Low High Borderline	
ST Shift: (at 8	00 msec) None □ Borderline □ Mild □ Moderate □ Severe □ (<-1 mm) (-1 to -2 mm) (-2 to -3 mm) (>-3 mm)	
slon	e: Rapid Upslope Slow Upslope Horizontal Downsloping Elevation	
Nondiagnosti		
	Rate not attained without angina or ST changes Conduction Disturbance Resting ST change	es 🗆 Drugs 🗆
Interpreta		
Probability of	Fischemia: Low ☐ Moderate ☐ High ☐ Indeterminate ☐ erance: Low ☐ Moderate ☐ High ☐	
Cardiac Risk:	Low Moderate High Indeterminate	
OTHER COM	VIENTS:	
	Cardiologist	Technologist


Medications:	Nitrates	ß Blocker	Ca++ Blocker	☐ Digoxin ☐ Diur	retic ACE Inhibitor Oth	ner
Type of Test: Protocol:		ercise Test The Modified Bruce			☐ Tilt Table ☐ Stress Echo Persantine ☐ Dobutamine ☐	
Γarget Heart R	ate =		_ (% of Age Predicted M	MANAGER CONTRACTOR OF THE CONT	
Time - Load	d	Mets	Heart Rate	Blood Pressure	ST. Shift Amount/slope*	Symptoms and Arrhythmia
Rest Supine						
	300					
				7427-0-76-11		
				, i		
						DP:

Test Report			
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	54.		
Heart Rate Response: Normal Low			
Blood Pressure Response: Normal Low High Borderline			
ST Shift: (at 80 msec) None Borderline (< -1 mm) (-1 to -2 mm) (-2 to -3 mm) (> -3 mm) slope: Rapid Upslope Slow Upslope Horizontal Downsloping Elevation Nondiagnostic GXT Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST changes		Drugs	
Interpretation: Probability of Ischemia: Low Moderate High Indeterminate Exercise Tolerance: Low Moderate High Cardiac Risk: Low Moderate High Indeterminate OTHER COMMENTS:			_
Cardiologist	-	Technolo	ogist

Clinical Data Myocardial Infarction Angina Atypical Angina Non-anginal Chest Pain Other Other
Medications: Nitrates
Type of Test: Graded Exercise Test Thallium MIBL Exercise MUGA Tilt Table Stress Echo
Protocol: Bruce ☑ Modified Bruce □ Naughton □ Upright Bicycle □ Persantine □ Dobutamine □
Target Heart Rate = (% of Age Predicted Maximum)
Heart Blood ST. Shift Symptoms and Time - Load Mets Rate Pressure Amount/slope* Arrhythmia
Rest Supine Sandry 15 140 190 100 100 100 100 100 100 100 100 10
(62% MHR) Couplets
Post. Post proceeding to Versandine
1. 83 In 170 Hees Up
2. 63
9 67 140/80
DP: 16#32
*ST slope: H = Horizontal; D = Downsloping; SU = Slow Upslope; RU = Rapid Upslope; E = Elevation Reason for Termination: Chest Pain
Test Report Chest Pain: Angina Atypical Angina Nonanginal Chest Pain None Heart Rate Response: Normal Low Blood Pressure Response: Normal Low High Borderline ST Shift: (at 80 msec) None Borderline Mild Moderate Severe (<-1 mm) (-1 to -2 mm) (>-2 to -3 mm) (>-3 mm) slope: Rapid Upslope Slow Upslope Horizontal Downsloping Elevation Nondiagnostic GXT Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST changes Drugs
Interpretation: Probability of Ischemia: Low Moderate High Indeterminate Exercise Tolerance: Low Moderate High Cardiac Risk: Low Moderate High Indeterminate OTHER COMMENTS:
Cardiologist Technologist

	rest Report							
	Chest Pain: Angina Atypical Angina	gina 🗌 Nonanginal Che	est Pain 🗌 None 🗆			100		
thorn	Heart Rate Response: Normal	Low 🗆	50/190 I					
ath Au	Blood Pressure Response: Norma	l 🗌 Low 🗆 High 🗀 B	orderline \square					
and He	ST Shift: (at 80 msec) None	Borderline	Mild 🗆	Moderate □	Severe □			
Region	50000	(< -1 mm)	(-1 to -2 mm)	(-2 to -3 mm)	(> -3 mm)			
Degu	slope: Rapid Upslope	Slow Upslope ☐ Hor	izontal Downsl	oping Elevation				
No We	Nondiagnostic GXT							
the or	Target Heart Rate not attained without	it angina or ST changes	☐ Conducti	on Disturbance	Resting ST changes		Drugs	

Nomogram of the prognostic relations embodied in the treadmill score

Circulation 1997;96:345-354

Duke Treadmill Score (DTS)

DTS= Exercise time (min) -5 x max ST deviation -4 x degree of CP

- •**DTS validated tool** to risk stratify pts after a GXT:
 - •Low 0.5-0.6% 1-yr mortality
 - •Moderate 1.3-2.9% 1-yr mortality
 - •High 5.3-8.3% 1-yr mortality

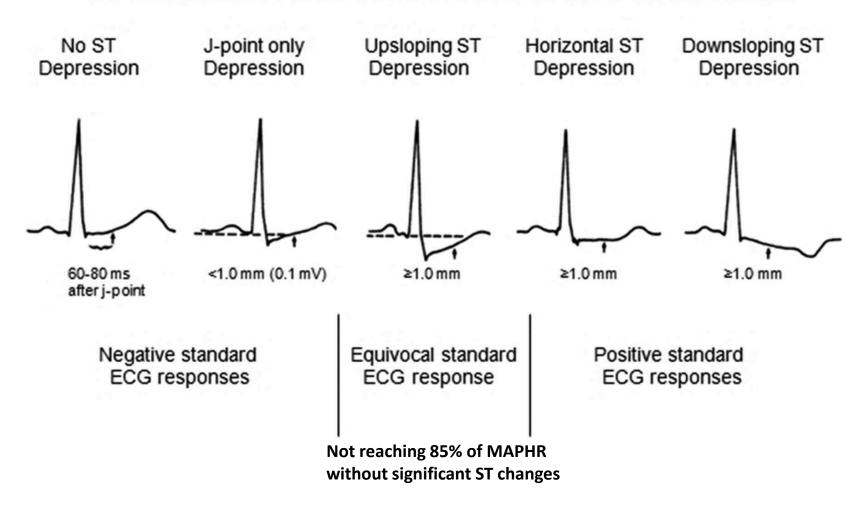
	Test Report							
	Chest Pain: Angina Atypical Angina	Nonanginal Che	st Pain 🗌 None 🗆			100		
ı	Heart Rate Response: Normal 🗆 Low							
ARP A	Blood Pressure Response: Normal	Low High B	orderline \square					
of Ho	ST Shift: (at 80 msec) None	Borderline	Mild 🗆	Moderate □	Severe □			
Spring		(< -1 mm)	(-1 to -2 mm)	(-2 to -3 mm)	(> -3 mm)			
namen f	slope: Rapid Upslope 🗆 Slo	ow Upslope Hori	izontal Downsle	oping Elevation				
SW S	Nondiagnostic GXT							
# 10 5	Target Heart Rate not attained without an	gina or ST changes	☐ Conduction	on Disturbance	Resting ST changes		Drugs	
9								

Chronotropic insufficiency

	Test Report			
	Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	100		
orthy	Heart Rate Response: Normal Low			
salth Aut	Blood Pressure Response: Normal Low High Borderline			
I Jen	ST Shift: (at 80 msec) None □ Borderline □ Mild □ Moderate □ Severe □			
Segion	(< -1 mm) (-1 to -2 mm) (-2 to -3 mm) (> -3 mm)			
g Body	slope: Rapid Upslope □ Slow Upslope □ Horizontal □ Downsloping □ Elevation □			
e Win	Nondiagnostic GXT			
n of th	Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST changes		Drugs	
8	10.44 A GIOLE GEORGE CONTROLL CONTROL			

Exercise hypotension

- Reflects a failure of cardiac output to increase during exercise
 - Severe coronary artery disease (left main coronary artery or threevessel involvement)
 - Left ventricular systolic dysfunction
 - Combination of both
 - LV outflow tract obstruction (HOCM, AS, etc.)
- Associated with a threefold higher risk of cardiac events over 2 years¹
- Consider obtaining an echocardiogram and/or IM or CV referral

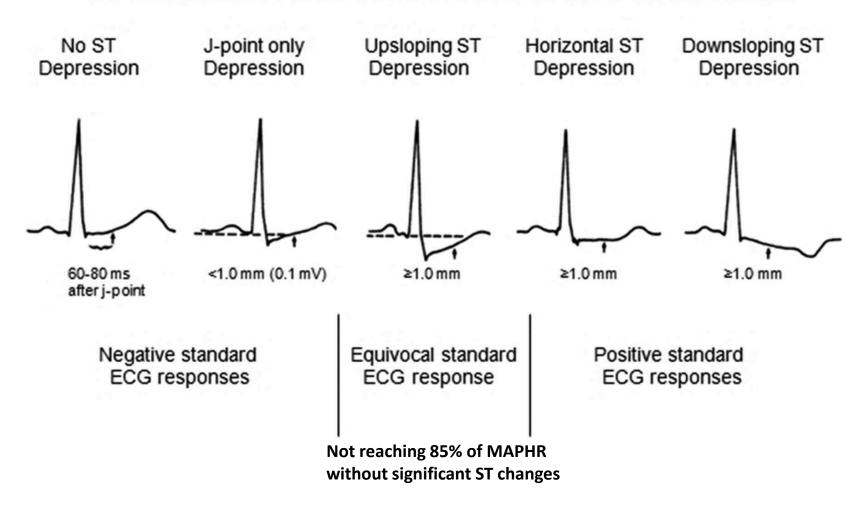

Exercise hypertension

- Exercise HTN is as a rise in systolic blood pressure during exercise above a threshold, usually between 190 - 220 mm Hg
- Possibly predicts future arterial HTN in people with normal resting blood pressure
 - BP monitoring
 - ? Role for 24-hour BP monitoring

	lest Report										
	Chest Pain: Angina	Atypical Ang	ina 🗆 Nonanginal	Chest Pain 🗌	None				1000		
thorty	Heart Rate Response:	Normal L	.ow 🗆								
BA.	Blood Pressure Respon	nse: Normal	☐ Low ☐ High ☐	Borderline]						
ĺ	ST Shift: (at 80 msec)	None	Borderline	Mild [333 T 1772	Severe □				
ŀ			(< -1 mm)	(-1 to -2	mm) (-2 to -	3 mm)	(> -3 mm)				
2	slope: Rapid I	Upslope 🗆	Slow Upslope □	Horizontal	Downsloping □	Elevation					
Ne W	Nondiagnostic GXT					(8.5)					
on of the	Target Heart Rate not att	tained without	angina or ST chang	jes 🗆 (Conduction Disturb	ance \square	Resting ST	changes		Drugs	

ST SEGMENT DEPRESSION DURING EXERCISE

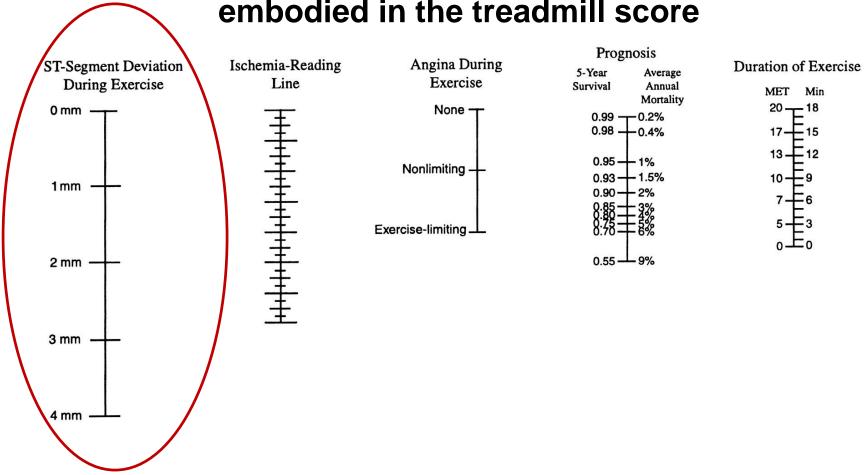
Fletcher G F et al. Circulation. 2013;128:873-934



	Test Report							
	Chest Pain: Angina Atypical Angi	ina Nonanginal Che	st Pain 🗌 None 🗆			847		
thorty	Heart Rate Response: Normal Le	ow 🗆						
ath Au	Blood Pressure Response: Normal	🗌 Low 🗌 High 🗌 B	orderline \square					
al He	ST Shift: (at 80 msec) None	Borderline	Mild 🗆	Moderate □	Severe □			
Region		(< -1 mm)	(-1 to -2 mm)	(-2 to -3 mm)	(> -3 mm)			
Bedu	slope: Rapid Upslope	Slow Upslope Hor	izontal 🗆 Downsl	oping Elevation				
he Wir	Nondiagnostic GXT			05.000		826		(888)
vision of th	Target Heart Rate not attained without	angina or ST changes	☐ Conducti	on Disturbance	Resting ST changes		Drugs	

Toot Panart			
Test Report			
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	59		
Heart Rate Response: Normal ☐ Low ☐			
Blood Pressure Response: Normal Low High Borderline			
ST Shift: (at 80 msec) None Borderline Mild Moderate Severe (< -1 mm) (-1 to -2 mm) (-2 to -3 mm) (> -3 mm)			
slope: Rapid Upslope ☐ Slow Upslope ☐ Horizontal ☐ Downsloping ☐ Elevation ☐			
Nondiagnostic GXT	_	221	
Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST changes	Ц	Drugs	
Interpretation: Probability of Ischemia: Low Moderate High Indeterminate Exercise Tolerance: Low Moderate High Cardiac Risk: Low Moderate High Indeterminate OTHER COMMENTS:			
		-	-
			_
Cardiologist		Techno	ogist

Test Report	
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	- 5
Heart Rate Response: Normal □ Low □	1 1 1
Blood Pressure Response: Normal Low High Borderline	
ST Shift: (at 80 msec) None □ Borderline □ Mild □ Moderate □ Severe □ (<-1 mm) (-1 to -2 mm) (-2 to -3 mm) (>-3 mm)	
slope: Rapid Upslope □ Slow Upslope □ Horizontal □ Downsloping □ Elevation □ Nondiagnostic GXT □	
Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST	changes Drugs
Interpretation:	
Probability of Ischemia: Low ☐ Moderate ☐ High ☐ Indeterminate ☐	
Exercise Tolerance: Low Moderate High Cardiac Risk: Low Moderate High Indeterminate Comments:	
OTHER COMINIENTS:	
Cardiologist	Technologis


ST SEGMENT DEPRESSION DURING EXERCISE

Fletcher G F et al. Circulation. 2013;128:873-934

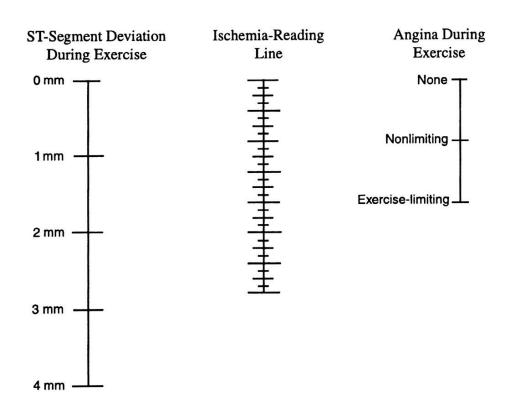
Nomogram of the prognostic relations embodied in the treadmill score

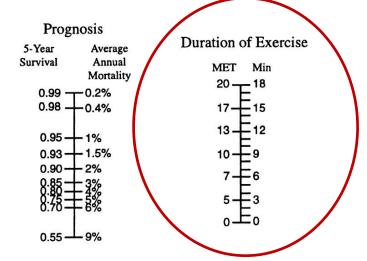
Circulation 1997;96:345-354

Duke Treadmill Score (DTS)

DTS= Exercise time (min) – 5 x max ST deviation – 4 x degree of CP

- •DTS validated tool to risk stratify pts after a GXT:
 - •Low 0.5-0.6% 1-yr mortality
 - •Moderate 1.3-2.9% 1-yr mortality
 - •High 5.3-8.3% 1-yr mortality


Test Report	
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	
Heart Rate Response: Normal □ Low □	1.97
Blood Pressure Response: Normal ☐ Low ☐ High ☐ Borderline ☐	
ST Shift: (at 80 msec) None □ Borderline □ Mild □ Moderate □ Severe □ (< -1 mm) (-1 to -2 mm) (-2 to -3 mm) (> -3 mm)	
slope: Rapid Upslope □ Slow Upslope □ Horizontal □ Downsloping □ Elevation □ Nondiagnostic GXT □	
	T changes Drugs
Interpretation: Probability of Ischemia: Low Moderate High Indeterminate Exercise Tolerance: Low Moderate High Indeterminate	
Cardiac Risk: Low Moderate High Indeterminate Comments:	
OTHER COMMENTS:	
Cardiologist	Technologist

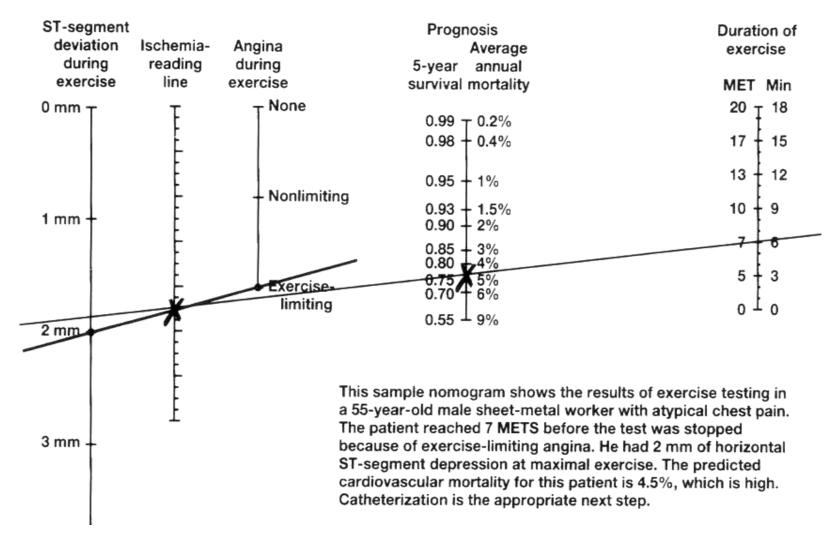

Exercise duration and functional class

$$1~{\rm MET}~\equiv~1\frac{\rm kcal}{{\rm kg}*h}~\equiv~4.184\frac{\rm kJ}{{\rm kg}*h}$$

FUNCTIONAL CLINICAL CLASS STATUS					O ₂ COST ml/kg/min	METS	BICYCLE ERGOMETER		TREADMILL PROTOCOLS					
	,						1 WATT = 6.1 Kpm/min	BRUCE MODIFIED 3 min Stages MPH %GR		BRUCE 3 min Stages MPH %GR		NAUGHTON		
	Ę			-0			FOR 70 KG	6.0	22	6.0	22]		
	ACTIVITY						BODY WEIGHT	5.5	5.5 20 5.5 20					
NORMAL	Æ,						Kpm/min	5.0	18	18 5.0	18			
	ON AGE,				56.0	16								16
AND					52.5	15								15
ı	DEPENDENT			H	49.0	14	1500		_			-		14
	Ä				45.5	13		4.2	16	4.2	16	1		13
	E				42.0	12	1350	_)				١ .	min	12
	Ť,				38.5	11	1200	3.4	14	3.4	14	-	iges	11
	HEALTHY,	≥			35.0	10	1050	0.4	1,4	0.4			%GR	10
	뽀	SEDENTARY HEALTHY	5		31.5	9		_				2	17.5	9
					28.0	8	900	_				- 2	14.0	8
		₹			24.5	7	750	2.5	12	2.5	12		14.0	7
II		¥			21.0	6	600					2	10.5	6
		SEDE	LIMITED	LIMITED	17.5	5	450	1.7	10	1.7	10	2	7.0	5
Ш] [14.0	4	300	7/	_			2	3.5	4
					7	MPT	10.5	3	150	1.7	5			2
				S	7.0	2	150	1.7	0			1	0	2
IV					3.5	1								1

Nomogram of the prognostic relations embodied in the treadmill score

Circulation 1997;96:345-354



Duke Treadmill Score (DTS)

DTS= Exercise time (min) – 5 x max ST deviation – 4 x degree of CP

- •DTS validated tool to risk stratify pts after a GXT:
 - •Low 0.5-0.6% 1-yr mortality
 - •Moderate 1.3-2.9% 1-yr mortality
 - •High 5.3-8.3% 1-yr mortality

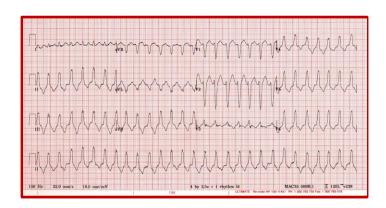
Test Report	
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Chest Pain ☐ None ☐	
Heart Rate Response: Normal □ Low □	
Blood Pressure Response: Normal Low High Borderline	
ST Shift: (at 80 msec) None □ Borderline □ Mild □ Moderate □ Severe □ (< -1 mm) (-1 to -2 mm) (-2 to -3 mm) (> -3 mm)	
slope: Rapid Upslope □ Slow Upslope □ Horizontal □ Downsloping □ Elevation □ Nondiagnostic GXT □	
Target Heart Rate not attained without angina or ST changes Conduction Disturbance Resting ST changes Drugs	
Interpretation: Probability of Ischemia: Low Moderate High Indeterminate Exercise Tolerance: Low Moderate High	
Cardiac Risk: Low Moderate High Indeterminate	
OTHER COMMENTS:	
Cardiologist Techn	ologist

Circulation 1997;96:345-354

Duke Treadmill Score (DTS)

DTS= Exercise time (min) -5 x max ST deviation -4 x degree of CP

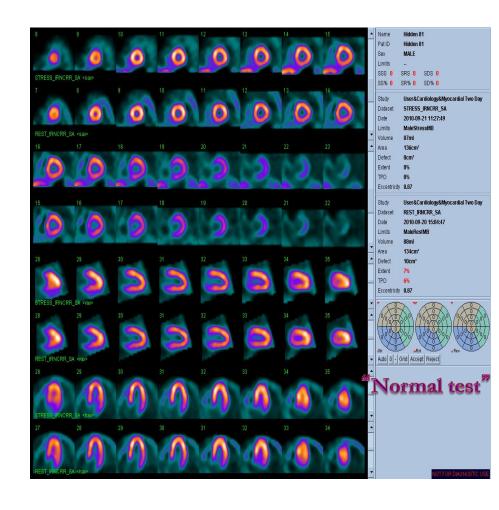
•**DTS validated tool** to risk stratify pts after a GXT:


- •Low 0.5-0.6% 1-yr mortality
- Moderate 1.3-2.9% 1-yr mortalityHigh 5.3-8.3% 1-yr mortality

Test Report						
Chest Pain: Angina ☐ Atypical Angina ☐ Nonanginal Ches	st Pain None					
Heart Rate Response: Normal □ Low □		TZ(16		5.4		
[100] 201 (100] 100 (100)	orderline					
ST Shift: (at 80 msec) None ☐ Borderline ☐ (< -1 mm)	Mild □ (-1 to -2 mm) zontal □ Downs	Moderate ☐ (-2 to -3 mm) sloping ☐ Elevation ☐	Severe (> -3 mm) Resting ST changes		Drugs	
Interpretation: Probability of Ischemia: Low Moderate High Exercise Tolerance: Low Moderate High Cardiac Risk: Low Moderate High Indeterm	Indeterminate □	1				
OTHER COMMENTS: Cardio						_
Cardio	logist				Technol	logist

1. Comment on: Ectopy & arrhythmias (mostly ventricular)

Exercise-induced Ventricular ectopy


- Ventricular arrhythmias can occur during exercise testing:
 - Sustained VT or Vfib due to CAD or LV dysfunction
 - Rare but life-threatening
 - Should prompt referral to CV (Echo, angiogram, etc.)
 - RVOT tachycardia in young adults without structural heart disease
 → usually benign
 - Arrhythmias related to cardiomyopathy can also occur in healthy young adults → poor prognosis
 - Less common than single PVCs, couplets, or short runs of NSVT

EPORT		BICYCL	E	D	(130) BRM BT% OF AGE ADJUSTE	D MAXIMUM OF 54 BPA
ELAPSED TIME (MIN)	LOAD	METS	HEART RATE	BLOOD PRESSURE (mm.Ho)	SYMPTOMS	E.K.G. PREMATURE BEA
(0) CONTROL	SUPINE		72		MOD RRUCE	
	SITING		75	176/99		
Ø 1	27-0		82	_		
. 2	1		80	-		
3	4	2.2.	86	1781104		
1/2 4	0.7-5		90			•
5	1		92	_		
ig ig	1	34	93	178 104		
0	27-10	<u> </u>	93		,	
E T B	1		98	_	slight SOB leg fatigue.	
9	1	4.6	100	202 100	ong in see a see in ag in igue.	
T 10	4.0-12	7.0	103	0.00.		PVC.
The state of	1		107	_		
12	1	1.0	109	191/102		
Meropoopo	5.4-14	7.3	114	1-111100-	fatique e peak NOCP.	
	eru.		111		rangere prapping cr.	
	<u>. 3</u>		95	-		
RCISI			87	190195		
S EXERCISE			84	17893		•
150 4			81	110110		
5			80	169 94	pt feeling time.	
			00	10-11-19	prince mg mice.	
EST END-POINT CARGET HEART R. CHEST PAIN CATIGUE DYSPNOEA DIZZINESS CLAUDICATION E.K.G.CHANGE DITHER (SPECIFY) CHINAL INTERPRET POSITIVE JEGATIVE JORDERLINE	ATE D	PHYSICIAN LOW COVC ST	thing in c	response of with a	bervise @ Negotive Grische Las I (7.3 METS). April 19617	sive and which was

Myocardial Perfusion Imaging Study (MPI)

- Stress-
 - -GXT 85% MPHR
 - -Pharmacologic Vasodilator Stress
 - Dypiridamole
 - Adenosine
 - Regadenoson
 - –Pharmacologic Adrenergic Stress
 - Dobutamine 85% MPHR
 Reactive airway disease
- MPI-
 - -Radiopharmaceutical
 - •Thallium- Ta¹²¹
 - •Technetium sestamibi- Tc⁹⁹
 - •Technetium tetrofosmin-Tc99
- -Identify infarction or ischemia
- -Gated SPECT- LV volume & LV EF

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

"MIBI" Report

The MPI or

Clinical History: Chest pain and inconclusive GXT.

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

Impression:

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

Impression:

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m To Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m To Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

Impression:

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by:

SpeechRec

dd:

03 Feb 2017 1346

dt:

03 Feb 2017 1346

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

Impression:

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 6/%.

Impression:

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

impression.

- 1. Normal perfusion study.
- 2. Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

01 Feb 2017

MYOCARDIAL PERFUSION IMAGING STUDY

Clinical History: Chest pain and inconclusive GXT.

The MPI or "MIBI" Report

Radiopharmaceuticals:

99m Tc Tetrafosmin 640 MBq intravenously administered on February 1, 2017. 99m Tc Tetrafosmin 630 MBq intravenously administered on February 2, 2017.

Gated tomographic images were obtained following the completion of an exercise stress test and at rest. Patient exercised for a total of 6 minutes according to the standard Bruce protocol and reached a workload of seven METs. Peak heart rate was 162 bpm, which is 91 % of age predicted maximum; BP increased to 176/94 mmHg. Patient did not experience any chest pain and there were borderline ST segment shifts...

The myocardial perfusion images are of good quality. The left ventricle is small in size. There are no significant reversible perfusion abnormalities. There is mild, fixed reduction tracer activity involving the mid anterior wall. This area is worse at rest and there is normal contractility of the corresponding wall segments in keeping with attenuation artifact.

The gated images show no significant segmental wall motion abnormalities. Left ventricular ejection fraction is 67%.

Impression:

- 1. Normal perfusion study.
- Normal left ventricular size and global and segmental systolic function.
- 3. Low probability of significant inducible ischemia.
- 1. Low cardiac risk based on perfusion criteria.

Dictated by:

Electronically signed by:

I ranscribed by: SpeechRec

Exam Date: 21 Sep 2016

History: 54-year-old man with aborted STEMI to NSTEMI and PCI to LAD May 2016. LVEF 55% by left ventriculogram. Now angina and decreased EF to 30% of bedside echo with akinesis anterior, apical and anteroseptal walls

Radiopharmaceutical: Tc-99m MIBI 660 MBq IV September 21, 2016

Tc-99m MIBI 618 MBq IV September 22, 2016

MYOCARDIAL PERFUSION STUDY:

Tomographic images have been obtained after the injection of sestamibi following dipyridamole infusion and again at rest. Gating was performed on both phases of the study. Technical quality of the study is reasonable with some infradiaphragmatic activity on the rest images.

The patient experienced left chest pressure with dipyridamole, spreading to the neck. This was relieved with aminophylline 100 mg IV. There are no ST-segment changes but frequent premature ventricular contractions with couplets. The patient initially attempted exercise but was only able to exercise for 1 minute 41 seconds at Bruce stage I, and his heart rate only increased to 62% of predicted maximum with frequent premature ventricular contractions and couplets. Exercise was discontinued and a dipyridamole study was performed.

There is normal uptake of sestamibi throughout the myocardium on both phases of the examination.

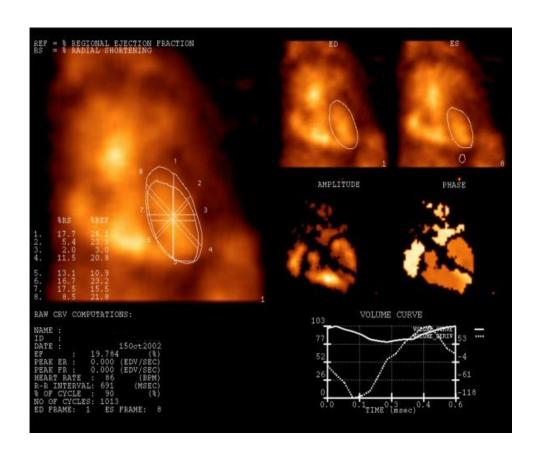
The left ventricle is moderately dilated. There is moderate global hypokinesis with akinesis of the distal anterior and apical segments. The left ventricular ejection fraction is 29%.

IMPRESSION:

- Normal myocardial perfusion. Low probability of inducible ischemia.
- 2. Dilated left ventricle with moderate to severe left ventricular systolic dysfunction.
- 3. Cardiac risk is increased because of the left ventricular dysfunction.

Interpreted with

Dictated by:


Electronically signed by:

Transcribed by: SpeechRec

dd: 23 Sep 2016 1137

MUGA Scan

- Nuclear study
- Accurate measure of LVEF
- Normal LVEF by MUGA between 50 to 70%

The MUGA Report

Exam Date: 21 No	ov 2016
Clinical History:54 years old male ICM, LVEF of 39% after PC I to LAD FOR STEMI, assess LVEF for ICD consideration	
MUGA STUDY:	
Technical: A resting three view resting examination was obtained with the patient in sinus rhythm.	
Relevant examination: Comparison was made to the myocardial perfusion exam done September 2016 at HSC.	
Findings: The left ventricle is moderately dilated. There is a mild hypokinesis to the distal anterior and anteroseptal segments. The LVEF is 42%, previously 29% on myocardial perfusion exam done September 2016.	
The right ventricle contractility is within normal.	
IMPRESSION:	
Mild to moderately reduced left ventricle systolic function	
Dictated by:	
Electronically signed by	

Transcribed by:

dd:

dt:

SpeechRec 21 Nov 2016 1352

21 Nov 2016 1352

The MUGA Report

Exam Date: 21 Nov 2016

Clinical History:54 years old male ICM, LVEF of 39% after PC I to LAD FOR STEMI, assess LVEF for ICD consideration

MUGA STUDY:

Technical: A resting three view resting examination was obtained with the patient in sinus rhythm.

Relevant examination: Comparison was made to the myocardial perfusion exam done September 2016 at HSC.

Findings: The left ventricle is moderately dilated. There is a mild hypokinesis to the distal anterior and anteroseptal segments. The LVEF is 42%, previously 29% on myocardial perfusion exam done September 2016.

The right ventricle contractility is within normal.

IMPRESSION:

Mild to moderately reduced left ventricle systolic function

Dictated by:

Electronically signed by

Transcribed by: SpeechRec

dd: 21 Nov 2016 1352 dt: 21 Nov 2016 1352

The MUGA Report

Exam Date: 21 Nov 2016

Clinical History:54 years old male ICM, LVEF of 39% after PC I to LAD FOR STEMI, assess LVEF for ICD consideration

MUGA STUDY:

Technical: A resting three view resting examination was obtained with the patient in sinus rhythm.

Relevant examination: Comparison was made to the myocardial perfusion exam done September 2016 at HSC.

Findings: The left ventricle is moderately dilated. There is a mild hypokinesis to the distal anterior and anteroseptal segments. The LVEF is 42%, previously 29% on myocardial perfusion exam done September 2016.

The right ventricle contractility is within normal.

IMPRESSION:

Mild to moderately reduced left ventricle systolic function

Dictated by:

Electronically signed by

Transcribed by: SpeechRec

dd: 21 Nov 2016 1352 dt: 21 Nov 2016 1352

Summary

GXT

- Screen for CAD
 - Clinical (CP)
 - ST-segment interpretation
- Additional Prognostic Value
 - BP response
 - HR response
 - Arrhythmias
 - Workload/functional capacity

MPI or "MIBI"

- Screen for CAD
- Ischemia vs. scar
- Risk stratification
- LVEF (low or normal)
- Some of the same additional info as GXT

MUGA

- Accurate LVEF
 - Cardiotoxic ChemoRx
 - Decision on medical Rx (<40%)
 - Decision on device Rx (EPS, ICD, CRT)

Thank you

Questions for our panel members?

