
Red Herrings Cause Alzheimer's Disease

MEDS Conference January 27th, 2018

Shawn Bugden
College of Pharmacy
Rady Faculty of Health Science
University of Manitoba

Faculty/Presenter Disclosure

- Relationships with commercial interests:
 - No Conflicts to Declare

Red Herrings

red her-ring
',red 'heriNG/
noun
plural noun: red herrings

1.

a dried smoked herring, which is turned red by the smoke.

2.

something, especially a clue, that is or is intended to be misleading or distracting.

Red Herrings

red her-ring
',red 'heriNG/
noun
plural noun: red herrings

1.

a dried smoked herring, which is turned red by the smoke.

2.

something, especially a clue, that is or is intended to be misleading or distracting.

Red Herrings?

Original Investigation

Association of Proton Pump Inhibitors With Risk of Dementia A Pharmacoepidemiological Claims Data Analysis

Willy Gomm, PhD; Klaus von Holt, MD, PhD; Friederike Thomé, MSc; Karl Broich, MD; Wolfgang Maier, Anne Fink, MSc; Gabriele Doblhammer, PhD; Britta Haenisch, PhD

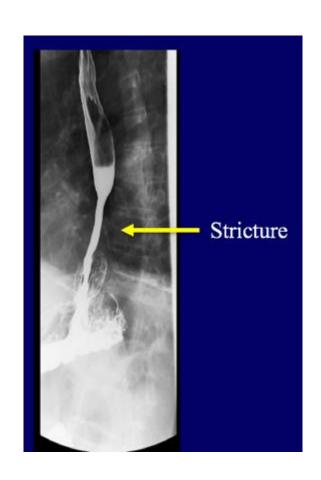
JAMA Neurol. 2016;73(4):410-416.

CONCLUSIONS AND RELEVANCE The avoidance of PPI medication may prevent the development of dementia.

What does that look like?

The Take Home

Consequences


- TB is an octagenarian who is a regular user of PPIs for Stage C Reflux
- His PPI is stopped by his family doctor in response to family concerns about cognitive decline

Consequences

- A few months later
 TB presents with
 heartburn and
 difficulty
 swallowing
- Endoscopy reveals stricture
- Harmed by "fake news"

Original Investigation

Association of Proton Pump Inhibitors With Risk of Dementia A Pharmacoepidemiological Claims Data Analysis

Willy Gomm, PhD; Klaus von Holt, MD, PhD; Friederike Thomé, MSc; Karl Broich, MD; Wolfgang Maier, MD; Anne Fink, MSc; Gabriele Doblhammer, PhD; Britta Haenisch, PhD

JAMA Neurol. 2016;73(4):410-416.

Original Investigation

Association of Proton Pump Inhibitors With Risk of Dementia A Pharmacoepidemiological Claims Data Analysis

Willy Gomm, PhD; Klaus von Holt, MD, PhD; Friederike Thomé, MSc; Karl Broich, MD; Wolfgang Maier, MD; Anne Fink, MSc; Gabriele Doblhammer, PhD; Britta Haenisch, PhD

JAMA Neurol. 2016;73(4):410-416.

	Risk of Incident Dementia			
	Both Sexes			
Risk Factor	HR (95% CI)	P Value		
PPI use calculated ^a				
With potential confounding factors	1.44 (1.36-1.52)	<.001		

Fake News?

Original Investigation

Association of Proton Pump Inhibitors With Risk of Dementia A Pharmacoepidemiological Claims Data Analysis

Willy Gomm, PhD; Klaus von Holt, MD, PhD; Friederike Thomé, MSc; Karl Broich, MD; Wolfgang Maier, MD; Anne Fink, MSc; Gabriele Doblhammer, PhD; Britta Haenisch, PhD

JAMA Neurol. 2016;73(4):410-416.

Meta-analysis of RCTs

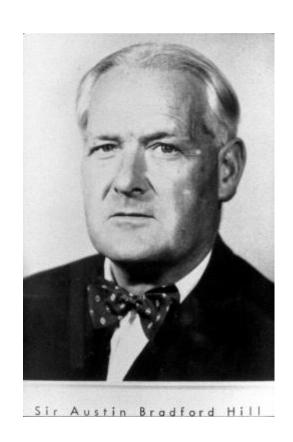
Individual RCT

Observational Studies (Patient Important Outcomes)

Observational Studies

Basic Research
(Test tube, animal/human physiology)

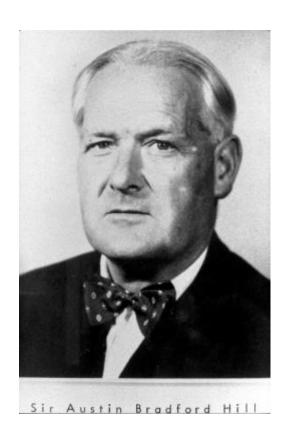
-


Clinical Experience (Non-systematic clinical observation)

Sir Austin Bradford Hill

Validate cause and effect

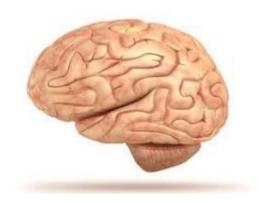
- 1. Biologically Plausible
- 2. Be Strong
- 3. Reflect a biological gradient dose response relationship
- 4. Be found consistently
- 5. Hold over time –
 temporal incidence of
 the disease should
 reflect prevalence of
 offending agent
- 6. Confirmed by experiment



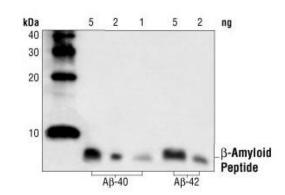
Sir Austin Bradford Hill

Validate cause and effect

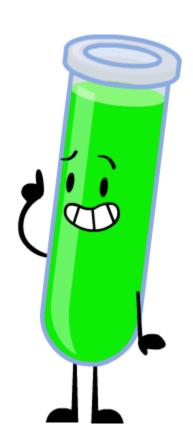
- 1. Biologically Plausible
- 2. Be Strong
- 3. Reflect a biological gradient dose response relationship
- 4. Be found consistently
- 5. Hold over time –
 temporal incidence of
 the disease should
 reflect prevalence of
 offending agent
- 6. Confirmed by experiment



PPIs cross BBB so could directly effect brain

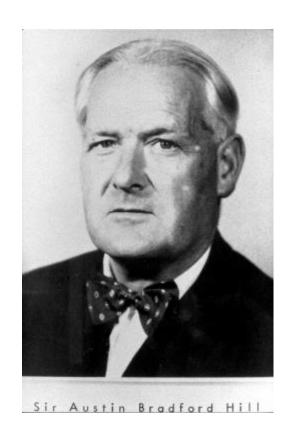


- Increased Aß levels in amyloid cell model in mice brains.
- Inverse γ –secretase modulation in combination with augmented βsecretase BACE1 activity leads to accumulation of Aβ peptides which are a major pathological sign of dementia



- Modulation of degradation of Aß by lysosomes in microglia Fibrillar Aß clearance is pH dependent. So the vacuolar—type H+ ATPase mediate this acidification.
- PPIs inhibit V-ATPase. Reduce Aß degradation and increase Aß levels

PPIs associated with vitamin B12 deficiency which is associated with lower cognition and neurological damage via impaired DNA synthesis and methylation



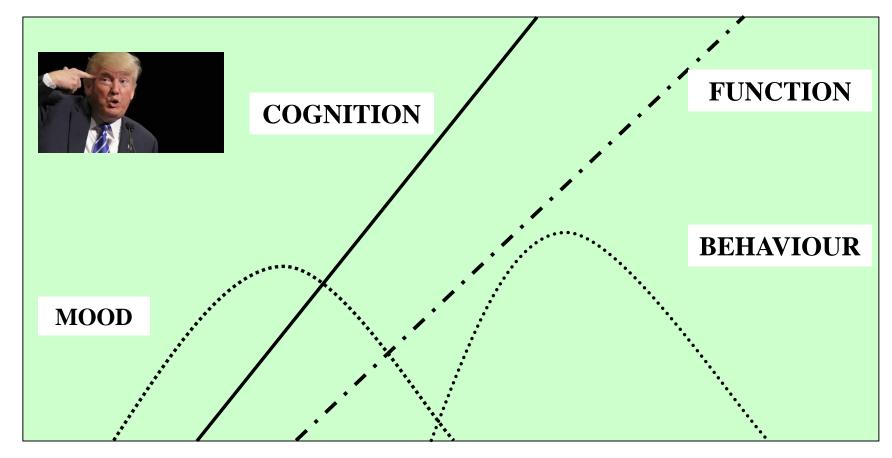
Sir Austin Bradford Hill

Validate cause and effect

- 1. Biologically Plausible
- 2. Be Strong
- 3. Reflect a biological gradient dose response relationship
- 4. Be found consistently
- 5. Hold over time –
 temporal incidence of
 the disease should
 reflect prevalence of
 offending agent
- 6. Confirmed by experiment

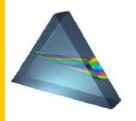
Strong?

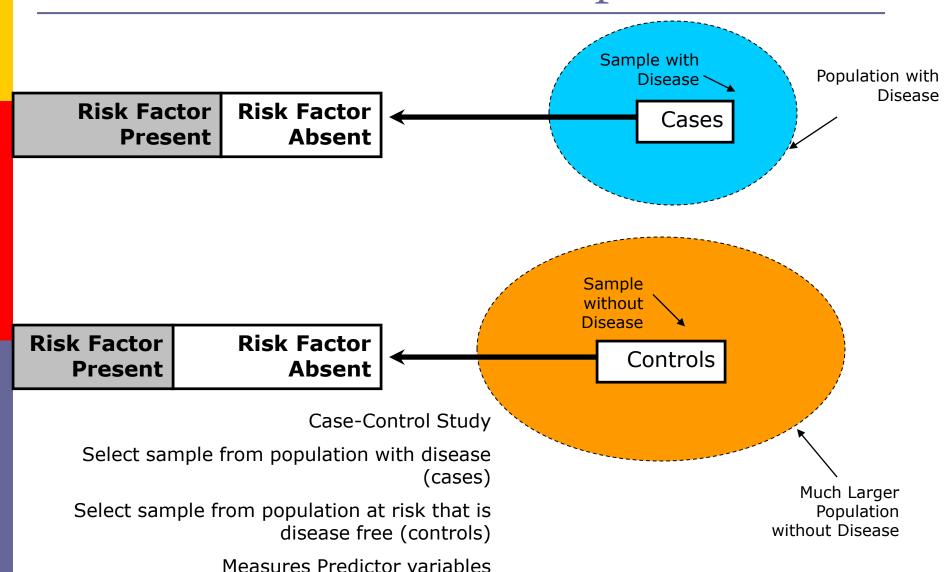
Zone of interes	t Zon	e of potentia	l bias	Zone of interest			
Reduced risk Increased risk							
0.1	0.33 O dc	1 Is ratio (log s	3 (cale)	10			
odds ratio (log scale)							

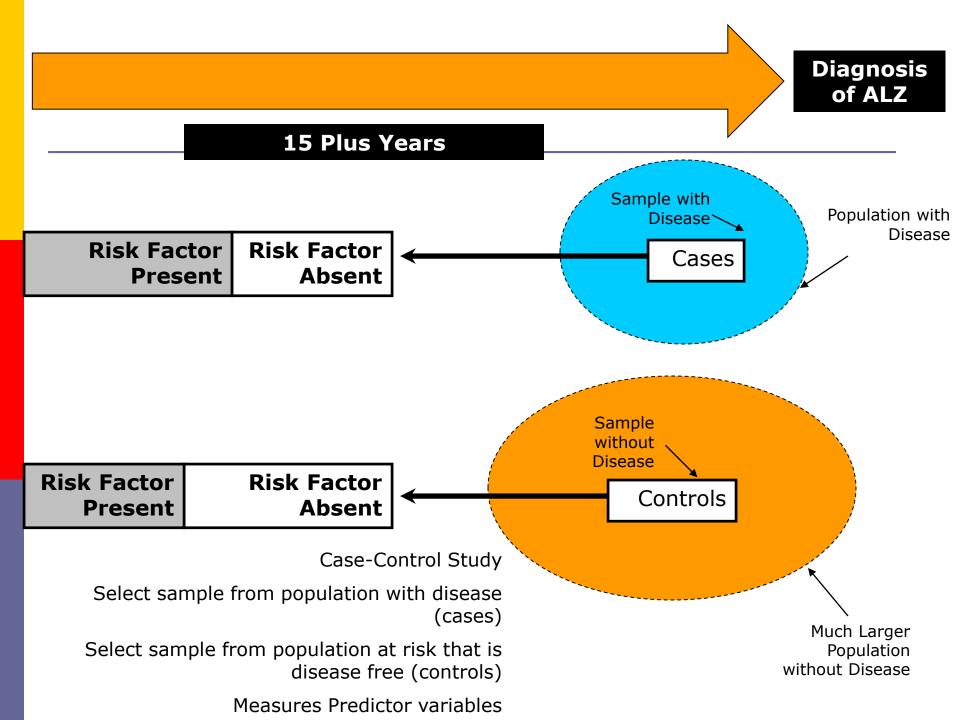

No difference

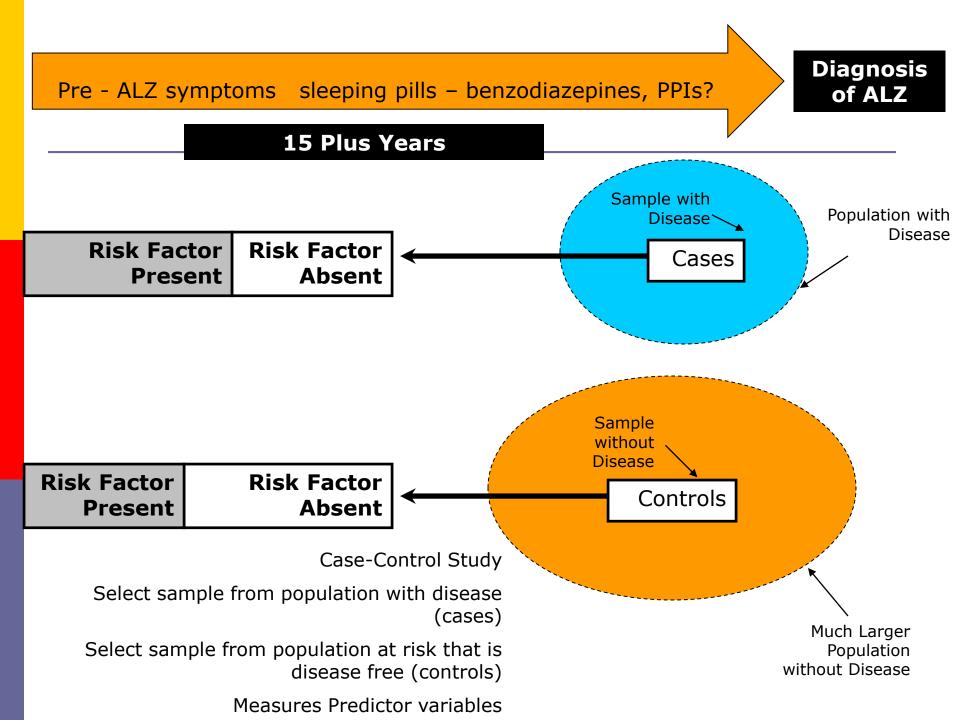
1.44 95% CI 1.36 to 1.52 Data base Large Number Greater Precision BUT Not Greater Validity Precisely Wrong Answer Selection Bias Inadequate Control of Confounding

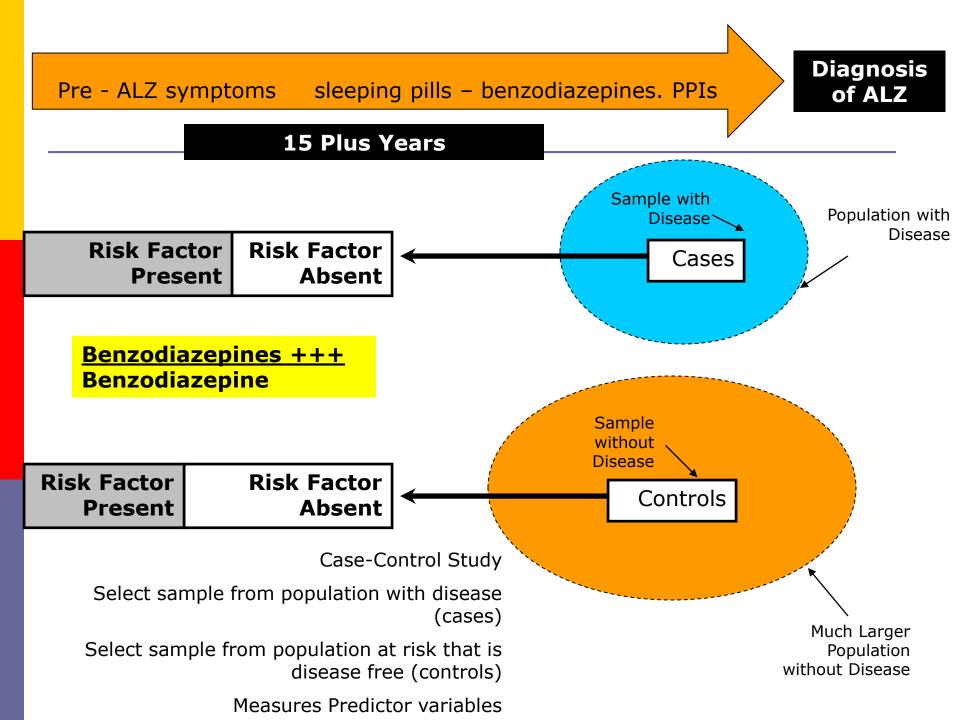
Deterioration

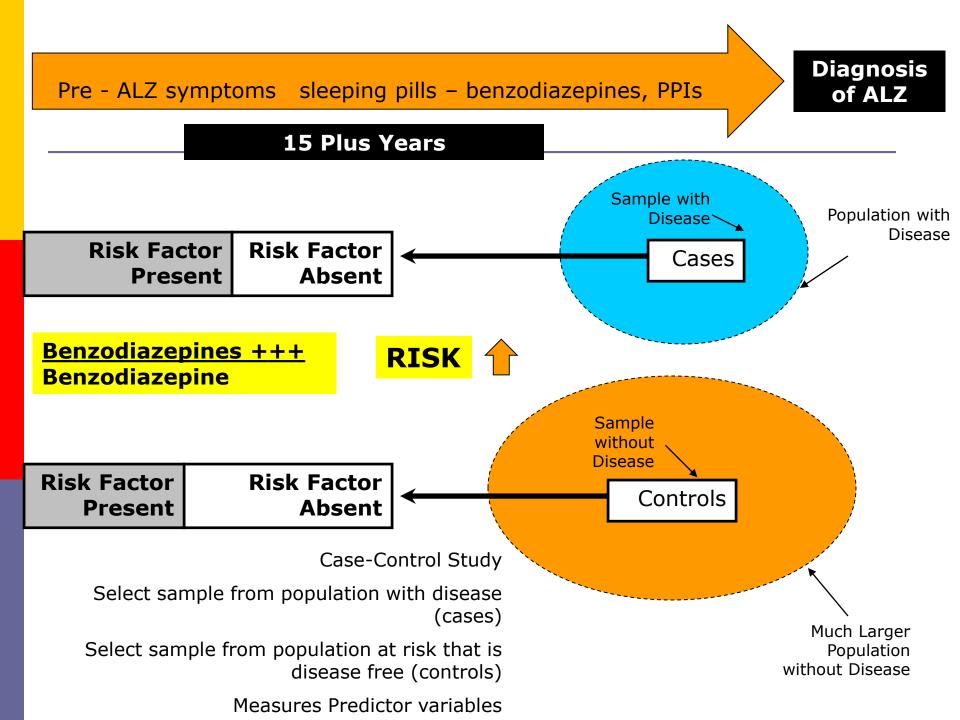

Natural History of ALZ

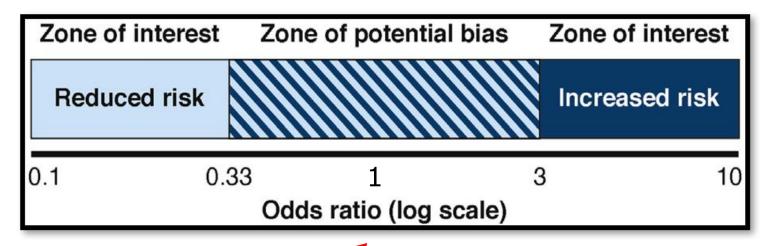

TIME


Brodaty et al. 2003. J. Clin Psychiatry 64:36.


http://www.ucc.ie/en/




Protopathic Bias



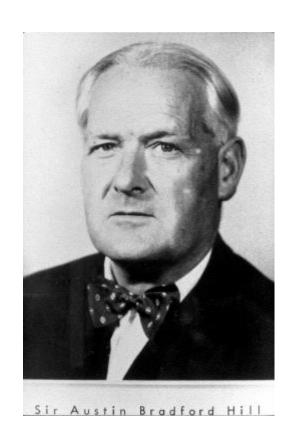
Strong?

Age, Sex, Depression, Diabetes, Stroke, Ischemic Heart Disease

Obstet Gynecol 2012;120:920-7

Alcohol, Smoking,

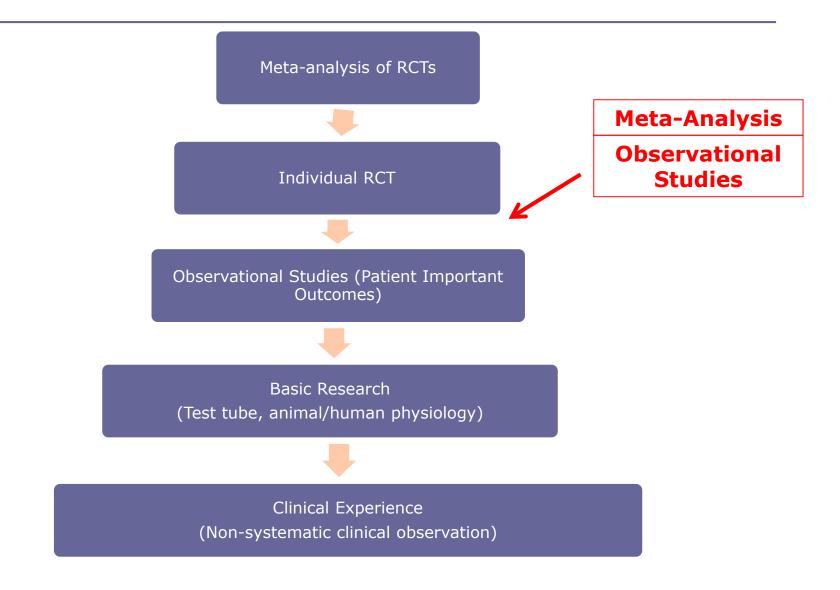
Hypertension, Obesity


Physical Inactivity...

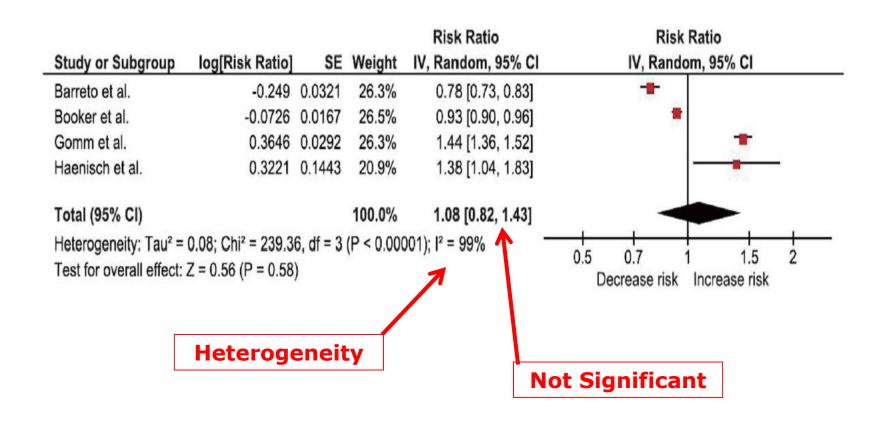
Sir Austin Bradford Hill

Validate cause and effect

- 1. Biologically Plausible
- 2. Be Strong
- 3. Reflect a biological gradient dose response relationship
- 4. Be found consistently
- 5. Hold over time –
 temporal incidence of
 the disease should
 reflect prevalence of
 offending agent
- 6. Confirmed by experiment



Hierarchy of Evidence


Meta-Analysis

Meta-analysis of RCTs Individual RCT Observational Studies (Patient Important Outcomes) Basic Research (Test tube, animal/human physiology) Clinical Experience (Non-systematic clinical observation)

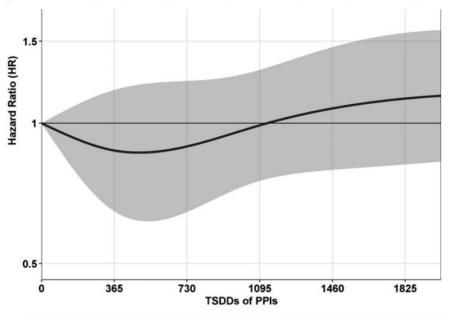
Hierarchy of Evidence

Study or Subgroup	log[Risk Ratio]			Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Barreto et al.	-0.249	0.0321	26.3%	0.78 [0.73, 0.83]	*
Booker et al.	-0.0726	0.0167	26.5%	0.93 [0.90, 0.96]	•
Gomm et al.	0.3646	0.0292	26.3%	1.44 [1.36, 1.52]	-
Haenisch et al.	0.3221	0.1443	20.9%	1.38 [1.04, 1.83]	
Total (95% CI)			100.0%	1.08 [0.82, 1.43]	. 00
Heterogeneity: Tau ² =	0.08; Chi ² = 239.3	6, df = 3	(P < 0.000	001); I ² = 99%	05 07 1 15 0
Test for overall effect:			M.		0.5 0.7 1 1.5 2 Decrease risk Increase risk

Composite score	No PPI use	1-4 y	5-8 y	9-14 y
Psychomotor speed, attention (n)	(9235)	(2328)	(1181)	(1094)
Model 1 ^b	ref	-0.02 (-0.06 to 0.02)	-0.05 (-0.11 to 0.00)	-0.10 (-0.15 to -0.04)
Model 2 ^c	ref	-0.01 (-0.05 to 0.03)	-0.04 (-0.09 to 0.02)	-0.06 (-0.12 to -0.01)
Model 3 ^d	ref	0.00 (-0.04 to 0.04)	-0.03 (-0.08 to 0.03)	-0.06 (-0.11 to 0.00)
Learning to working memory (n)	(9248)	(2334)	(1181)	(1095)
Model 1 ^b	ref	-0.02 (-0.05 to 0.01)	-0.03 (-0.07 to 0.02)	-0.08 (-0.12 to -0.03)
Model 2 ^c	ref	-0.01 (-0.04 to 0.02)	0.00 (-0.04 to 0.05)	-0.03 (-0.08 to 0.01)
Model 3 ^d	ref	0.00 (-0.04 to 0.03)	0.01 (-0.03 to 0.05)	-0.03 (-0.07 to 0.02)
Overall cognition (n)	(9231)	(2328)	(1181)	(1092)
Model 1 ^b	ref	-0.02 (-0.05 to 0.01)	-0.04 (-0.08 to 0.00)	-0.08 (-0.13 to -0.04)
Model 2 ^c	ref	-0.01 (-0.04 to 0.02)	-0.02 (-0.06 to 0.02)	-0.05 (-0.09 to 0.00)
Model 3 ^d	ref	0.00 (-0.03 to 0.03)	-0.01 (-0.05 to 0.03)	-0.04 (-0.08 to 0.00)

CONCLUSIONS: In an analysis of data from the Nurses' Health Study II, we did not observe a convincing association between PPI use and cognitive function. Our data do not support the suggestion that PPI use increases dementia risk.

Not Significant



Proton Pump Inhibitor Use and Dementia Risk: Prospective Population-Based Study

Shelly L. Gray, PharmD, MS,* Rod L. Walker, MS,† Sascha Dublin, MD, PhD,† Onchee Yu, MS,† Erin J. Aiello Bowles, MPH,† Melissa L. Anderson, MS,† Paul K. Crane, MD, MPH,§ and Eric B. Larson, MD, MPH†§

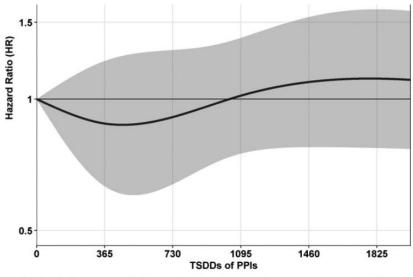
Adjustment	365 TSDDs	730 TSDDs	1095 TSDDs	1460 TSDDs	1825 TSDDs
Minimal	1.04 (0.77, 1.39)	1.11 (0.81, 1.52)	1.19 (0.91, 1.56)	1.26 (0.94, 1.70)	1.31 (0.95, 1.81)
Primary	0.87 (0.65, 1.18)	0.89 (0.65, 1.23)	0.99 (0.75, 1.30)	1.08 (0.80, 1.46)	1.13 (0.82, 1.56)

All-cause dementia HR (95% CI) comparing given level of PPI exposure to no exposure (0 TSDDs)

Adjustment 365 TSDDs 730 TSDDs 1095 TSDDs 1460 TSDDs 1825 TSDDs

Minimal 1.04 (0.77, 1.39) 1.11 (0.81, 1.52) 1.19 (0.91, 1.56) 1.26 (0.94, 1.70) 1.31 (0.95, 1.81)

Primary 0.87 (0.65, 1.18) 0.89 (0.65, 1.23) 0.99 (0.75, 1.30) 1.08 (0.80, 1.46) 1.13 (0.82, 1.56)

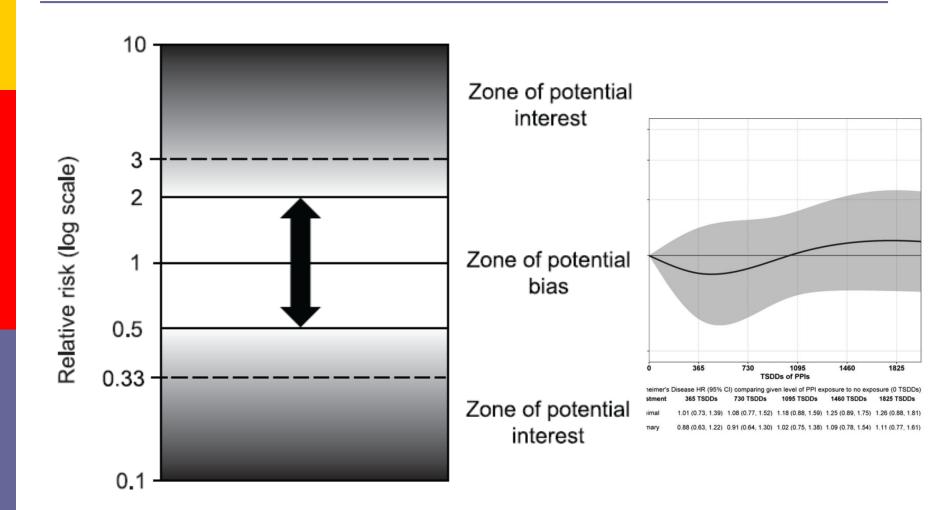


 Alzheimer's Disease HR (95% CI) comparing given level of PPI exposure to no exposure (0 TSDDs)

 Adjustment
 365 TSDDs
 730 TSDDs
 1095 TSDDs
 1460 TSDDs
 1825 TSDDs

 Minimal
 1.01 (0.73, 1.39)
 1.08 (0.77, 1.52)
 1.18 (0.88, 1.59)
 1.25 (0.89, 1.75)
 1.26 (0.88, 1.81)

 Primary
 0.88 (0.63, 1.22)
 0.91 (0.64, 1.30)
 1.02 (0.75, 1.38)
 1.09 (0.78, 1.54)
 1.11 (0.77, 1.61)


 Alzheimer's Disease HR (95% CI) comparing given level of PPI exposure to no exposure (0 TSDDs)

 Adjustment
 365 TSDDs
 730 TSDDs
 1095 TSDDs
 1460 TSDDs
 1825 TSDDs

 Minimal
 1.01 (0.73, 1.39)
 1.08 (0.77, 1.52)
 1.18 (0.88, 1.59)
 1.25 (0.89, 1.75)
 1.26 (0.88, 1.81)

 Primary
 0.88 (0.63, 1.22)
 0.91 (0.64, 1.30)
 1.02 (0.75, 1.38)
 1.09 (0.78, 1.54)
 1.11 (0.77, 1.61)

Sir Austin Bradford Hill

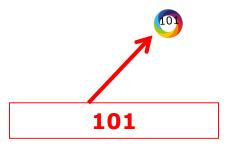
Validate cause and effect

- 1. Biologically Plausible WHO KNOWS
- 2. Be Strong NO
- 3. Reflect a biological gradient dose response relationship
- 4. Be found consistently NO
- 5. Hold over time temporal incidence of the disease should reflect prevalence of offending agent
- 6. Confirmed by experiment

Sir Austin Bradford Hill

And the Winner Is?

Original Investigation


Association of Proton Pump Inhibitors With Risk of Dementia A Pharmacoepidemiological Claims Data Analysis

Willy Gomm, PhD; Klaus von Holt, MD, PhD; Friederike Thomé, MSc; Karl Broich, MD; Wolfgang Maier, MD; Anne Fink, MSc; Gabriele Doblhammer, PhD; Britta Haenisch, PhD

Proton Pump Inhibitor Use and Dementia Risk: Prospective Population-Based Study

Shelly L. Gray, PharmD, MS,* Rod L. Walker, MS,† Sascha Dublin, MD, PhD,†† Onchee Yu, MS,† Erin J. Aiello Bowles, MPH,† Melissa L. Anderson, MS,† Paul K. Crane, MD, MPH, $^{\delta}$ and Eric B. Larson, MD, MPH† $^{\delta}$

Red Herrings

red her-ring
',red 'heriNG/
noun
plural noun: red herrings

1.

a dried smoked herring, which is turned red by the smoke.

2.

something, especially a clue, that is or is intended to be misleading or distracting.

