

Approach to Localization

Sean J. Udow, MD, FRCPC Assistant Professor, Section of Neurology University of Manitoba March 2, 2018

Objectives

- To review the anatomy of the nervous system
- To understand the relationship between clinical symptoms and signs and neuroanatomy
- To develop an approach to localization within the nervous system
- My goal to help you refine neurological localization skills in 40 minutes
- Your goal to keep up...

Localization in Neurology

Where is the Lesion?

- Central or Peripheral?
 - Upper vs Lower Motor Neuron
- Peripheral:
 - Muscle, neuromuscular junction, nerve, plexus, root
- Central:
 - Spinal cord, brainstem, hemispheres
- Right or Left
- Diffuse, multifocal or focal

Why does it matter?

- To sound smart?
- Party trick?
- Guide differential diagnosis
- Inform investigations
- Correlate clinical presentation with diagnostic tests

Neuroanatomy Review – The Brain

Neuroanatomy Review – The Brain

Lobes of the Brain

Gray & White Matter

Gray matter

- Comprised primarily of the cell bodies of neurons and supporting glial brain cells
- Synapses
- Beginning and end of information transfer along neurons (home and office)

White matter

- Comprised of the projecting axons of neurons
- Myelinated, so lighter in color
- Connections between the beginning and end of neurons (the road)

Coronal view

White matter tracts connect parts of the brain:

Connections between hemispheres (corpus callosum)

Cortical Function

Non-Dominant (usually right) Hemisphere Functions

- Prosody (emotion conveyed by tone of voice)
- Complex visuospatial skills
- Emotional significance to events and language
- Music perception
- Attention to both sides of the world

Dominant (usually left) Hemisphere Functions

- Language
- Skilled motor formulation (praxis)
- Attention to the right side of the world

FRONTAL LOBE

- "Action & inaction"
- Primary motor cortex
- Motor association areas
- Motivation
- Inhibition of inappropriate behaviors
- Expressive language (L)

PARIETAL LOBE

- "Surveys the Environment"
- Primary sensory cortex
- Sensory association area
- Attention (R>L)
- Praxis

OCCIPITAL LOBE

- "Vision"
- Primary visual cortex

Primary Visual Cortex

- Receives inputs from the retina
- \rightarrow optic nerves
- → thalamus (lateral geniculate body)
- \rightarrow white matter tracts (optic radiations)
- To the primary visual cortex
- Lesion of unilateral primary visual cortex causes contralateral hemianopia

TEMPORAL LOBE

- "Special"
- Special senses bilaterally represented:
 - Smell, taste, sound
- Language comprehension (L)
- Memory
- Limbic system emotions, homeostasis

Areas involved in language

- Broca's area language production
- Wernicke's area language comprehension
- Arcuate fasciculus connects the two

Language Domain	Broca's Aphasia	Wernicke's Aphasia
SPONTANEOUS SPEECH	Nonfluent	Fluent with paraphasic errors
COMPREHENSION	Intact	impaired
NAMING	Impaired	Impaired
REPETITION	Impaired	Impaired
READING	Often impaired	Impaired for comprehension
WRITING	Impaired	Normal
ASSOCIATED SIGNS	Right hemiparesis, right hemisensory loss	Right hemianopia

Motor and Sensory Systems

Upper Motor Neuron Lower Motor Neurons Connect the spinal cord to the muscle

Thalamus 🖊

- 'Secretary' for cerebral cortex
- Receives sensory input & passes it to the cortex
- Involved in consciousness
- Involved in motor control

Motor Control

- Thalamus receives input from
 - Cerebellum
 - Basal ganglia
 - Relays information to motor cortex
- Basal ganglia
 - Complex circuit
 - Involved in motor initiation

The Spinal Cord

0

9

C

The Spinal Cord – Autonomic output

Sympathetic Output

Parasympathetic: GI / GU

Spinal Cord Outputs

- Pathways running through the brainstem:
- Corticospinal tract
- Medial lemniscus
- Spinothalamic tract
- Reticular activating system
 - Consciousness
- Cerebellar pathways

The Cerebellum

- Coordination of movements
- Lesion of the cerebellum causes IPSILATERAL ataxia

Cerebellar Inputs

Cerebellar Outputs

Brainstem Anatomy

Upper Brainstem:

- Optic nerve (II)
 - Bypasses brainstem en route to thalamus
- Oculomotor nerves (III, IV, VI)
 - Move eyes
 - Originate in midbrain and pons

Mid-brainstem / Pontine:

- Trigeminal nerve (V)
 - Facial sensation
- Facial nerve (VII)
 - Facial expression
- Vestibulocochlear nerve (VIII)
 - Hearing
 - Vestibular
 - Near facial nerve

In the Medulla:

• IX & X

- Swallowing
- Parasympathetic function
- Spinal accessory (XI)
 - moves neck and trapezius
- Hypoglossal (XII)
 - tongue

Putting it to work

Case 1

- A 65 year old smoker presents with acute onset right face, arm and leg weakness and numbness
- On exam :
 - Normal language and visual fields
 - Normal eye movements, tongue, palate
 - Right facial droop, right arm and leg weakness (grade 4/5)
 - Right hemianesthesia to pinprick and vibration
 - Hyperreflexia in right arm and leg, right Babinski sign
- Where are the possible localizations?

Unilateral Weakness and Numbness Clues to localization:

- Tracts involved:
 - Corticospinal tract
 - Both sensory tracts
- All symptoms on the same side
 - Must be above decussations of motor and sensory tract
 - Above medulla, right side

Unilateral Weakness and Numbness Right Face, Arm and Leg

Possible locations:

- Cortex
- Corona Radiata
- Internal capsule
- Midbrain
- Pons

Which of these can we rule out?

Not the Cortex

A lesion that big would affect language (left brain) and/or vision

Not the Brainstem

Sparing of cranial nerves

Case 1 - Diagnosis

- Sensorimotor lacunar stroke:
 - Lesion of contralateral internal capsule (motor) and thalamus (sensory)
- Classic lacunar stroke syndrome

Case 2

- 55 year old man presents with 2 days of 'increasing confusion'
- Presents to your clinic
- Normal neurological exam except:
 - Nonsensical speech rambling, using made up words
 - Trouble understanding simple commands
 - Febrile 38.2 dC
 - Right superior quadrantanopia
- Plain CT brain is normal
- Where is the localization?
- Now what?

Case 2 – Receptive Aphasia, Right superior visual field deficit & fever

Case 3

 65 year old smoker presents with right facial weakness and left arm and leg weakness

• On exam:

- Right facial droop
- Left arm and leg weakness
- Normal sensory exam

Right facial weakness, left body weakness Clues to localization:

- "Crossed sign"
- Tracts involved
- Right corticospinal tract (left body weakness)
- Right cranial nerve VII (right facial weakness)

Where is the Lesion? Right facial weakness, left body weakness

Case 3 Right facial weakness, left body weakness

- You suspect a pontine stroke
- CT scan of the brain is normal
- Carotid ultrasound shows no stenosis
- What now?

Brainstem Lesions

- Small hit, big damage
- Lesion may be too small to be seen on CT
- MRI more sensitive
- Remember to image the posterior circulation!

Vertebral Artery Dissection

Suggestive of Brainstem Lesions

- Crossed signs (motor or sensory)
- Diplopia / Ophthalmoplegia (CN III, IV, VI)
- Dysarthria (CN VII, XII)
- Vertigo (CN VIII)
- Dysphagia (CN IX, X)

Case 4

- A 45 year old woman presents with 4 days of progressive numbress and weakness of all four limbs
- Cranial nerves unaffected

• Where are the possible localizations for these symptoms?

Symmetrical numbness and weakness of all four limbs, face normal

- Muscle? Unlikely (numbness)
- NMJ? Unlikely (numbness)
- Nerve? Likely (many nerves involved)
- Plexus or root? Unlikely (4 limbs)
- Spinal cord? Likely (spares the face)
- Brainstem? Unlikely (no signs above neck)
- Brain? Unlikely (no signs above neck)

Symmetrical numbness and weakness of all four limbs, face normal

- Muscle? Unlikely (numbness)
- NMJ? Unlikely (numbness)
- Nerve? Likely (many nerves involved)
- Plexus or root? Unlikely (4 limbs)
- Spinal cord? Likely (spares the face)
- Brainstem? Unlikely (no signs above neck)
- Brain? Unlikely (no signs above neck)

Clues to Look For

Spinal Cord:

- Bowel or bladder abnormalities
- Autonomic dysfunction
- Sensory level
- Upper motor neuron signs: spasticity, hyperreflexia, upgoing toes Peripheral Nerve:
- Lower motor neuron signs: Arreflexia, flaccidity, fasciculations Note – arreflexia may occur in acute spinal cord lesions

Differential Diagnoses

- Subacute spinal cord lesion
 - Compressive
 - Demyelinating (MS)
 - Infectious
 - Other inflammatory
 - Neoplastic
 - Need MRI!
- Subacute polyneuropathy
 - Rule out guillain barre syndrome!
 - Need Lumbar Puncture!

Case 5

- 45 year old woman presents with drooping of the eyelids, double vision, slurred speech
- Normal level of consciousness
- Mild weakness of proximal arm and leg muscles
- Normal sensation and coordination
- Decreased reflexes
- Possible localizations?

Ptosis, diplopia, dysarthria, limb weakness

• Brainstem?

- Must involve cranial nerve III (ptosis and diplopia)
- Must involve cranial nerve VII, IX or X (slurred speech)
- Must involve corticospinal tract (limb weakness)
- But normal level of consciousness?
- Decreased reflexes?

Ptosis, diplopia, dysarthria, limb weakness

- Multiple nerves?
 - Cranial nerves III, VII, IX, X
 - Motor nerves to arms and legs
 - But sensation intact?

Ptosis, diplopia, dysarthria, limb weakness

- Neuromuscular junction
 - Myasthenia gravis
 - Commonly presents with cranial nerve findings and motor weakness
 - Fatiguability symptoms worse with use of muscles
 - Acetylcholine receptor antibodies (at the neuromuscular junction)

Objectives

- To review the anatomy of the nervous system
- To understand the relationship between clinical symptoms and signs and neuroanatomy
- To develop an approach to localization within the nervous system
- My goal to help you refine neurological localization skills in 25 minutes
- Your goal to keep up

