Cardiac Rehab Workshop

May 24, 2018 Thang Nguyen MD FRCPC University of Manitoba Section of Cardiology, Department of Internal Medicine WRHA Medical Advisor Cardiac Rehabilitation

Objectives

- Review benefits of cardiac rehab (CR) for ACS patients
- Understand current process of CR in Manitoba
- Have an open discussion about CR case management, exercise prescriptions, and limitations

SPECIAL ARTICLE

Exercise-Based Rehabilitation for Patients with Coronary Heart Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials

Rod S. Taylor, MSc, PhD, Allan Brown, MBA, MA, Shah Ebrahim, DM, MSc, Judith Jolliffe, MSc, Hussein Noorani, MSc, Karen Rees, MSc, PhD, Becky Skidmore, MLS, James A. Stone, PhD, David R. Thompson, PhD, Neil Oldridge, PhD

Outcome	Odds Ratio
Total Mortality	0.80 (0.61–0.93)
Cardiac Mortality	0.74 (0.61–0.96)
Total Cholesterol	– 0.37 (– 0.63 to –0.11) mmol/L
Triglycerides	– 0.23 (– 0.23 to –0.0.7) mmol/L
Systolic Blood Pressure	– 3.2 (–5.4 to –0.9) mmHg
Diastolic Blood Pressure	– 1.2 (–2.7 to –0.3) mmHg
Smoking Cessation	0.64 (0.50-0.83)

Benefits of CR

US Physiolicity Research Foundation: Dr. Taplaria discuss Charaff the British Association of Cardias Reliabilitation Scientific Committee. Dr. Stone in part president of the Canadian Association of Cardiac Reliabilitation.

Requers for reprints should be addressed to Rod Taylor, MSc, PhD, Department of Epideminings and Public Health, University of Bemingham, Edglanica, Biomingham B15 2777, United Kingdom, or takty/orPhitum ac.ak.

Manuscript submitted heptember 19, 2003, and accepted in revised form December 15, 2003.

682 0 2000 by Encerpta Medica Inc. All rights reserved. Randomized controlled trials have generally been small and often of questionable methodological quality, mixing concerns that the true benefit of exercise rehabilitation may be overestimated (9,10). Early trials enrolled almost exclusively low-risk, middle-aged reen after myocardial infection. The exclusion or undersuppersentation of wentry, elderly people, and other cardiac groups (e.g.,

> 0002 4343/04/8-are front mailer doi:10.0146[.am/mod.2004.01.009

Taylor et al. AmJMed2004;116:682

-	Ranto kasha Ruthi Ing	ТН	E COCHI		
	Test an express				Aux 1941
	General PRO	-		-	00108-0
	Datas Mil	100			101210-008
	TOPAC TWO	3140	100	+	001003-001
	101 M	10.000	Sec. 10		275 [Sec. 100]
	Internation West	100	-		8 - 199-200
	1 mar 194	10.000	14124	-	101(124.14)
	2010/1011	100	100	+-	100(100.020)
	Tankar (200)	100	1000		110(100,004,004)
	101103-01/101	100	100		100 (100 a.m.)
	10102-0021	100			100,000,000
	34142 (182)	10000	10000		\$11217.11E
	The second second second		-		and the second se

- 47 studies CR vs no-CR
- (Up to December 2009)
- 10 794 patients with CAD

	Patients	Risk Ratio (95% CI)
Total Mortality (>12mo)	5790	0.87 (0.75, 0.99)
CV Mortality (>12 mo)	4757	0.74 (0.63, 0.87)
Fatal/nonfatal MI (>12 mo)	5682	0.97 (0.82, 1.15)
CABG (>12 mo)	2189	0.93 (0.68, 1.27)
PTCA (>12 mo)	1322	0.89 (0.66, 1.19)
Hospitalizations (6–12 mo)	463	0.69 (0.51, 0.93)
Hospitalizations (>12 mo)	2009	0.98 (0.87, 1.11)

Heran et al. Cochrane Database Sys Rev 2011:CD001800

Cochrane Database of Systematic Reviews

Exercise-based cardiac rehabilitation for coronary heart disease (Review)

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, Taylor RS

2016;Issue 1.Art.No.CD001800

Exercise-based cardiac rehabilitation for coronary heart disease (Review)

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, Taylor RS

- 63 RCT's of CR vs no-CR
- Dec 2009–July 2014
- 14 486 patients
- post-MI and post-revascularization
- Mean age 47.5–71.0 years
- 15% women

Exercise-based cardiac rehabilitation for coronary heart disease (Review)

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, Taylor RS

	Risk Ratio	95% CI
Total Mortality	0.96	0.88 - 1.04
Cardiovascular Mortality	0.74	0.64 - 0.86
Hospitalizations	0.82	0.70 – 0.96
Myocardial Infarctions	0.90	0.79 – 1.04
CABG	0.96	0.80 - 1.16
PCI	0.85	0.70 - 1.04

2016;Issue 1.Art.No.CD001800

Case #1

- Mr. A 58 year old male
- PMHx HTN, smoker, depression
- Admitted for ACS
- hsTnT 60, EF normal
- Revascularized with mLAD PCI
- Discharge meds: ASA, ticagrelor, rosuvastatin, ramipril, bisoprolol, citalopram

Now what?

Pre-discharge Planning

- How does your facility initiate CR referral?
- Does your facility have an automatic CR referral process?

Referral: First Step of Cascade

Wellness Institute and Rehfit

- Once referral received...
- Triage and appropriateness
- Patient contact
- Information gathering

Wellness Institute and Rehfit

First visit or class...

Exercise Prescription

- Mr.A needs guidance for exercise
- Pre-ACS, active with golfing, tennis
- Occupation office work
- Pre-CR stress test:
- Rest HR 60, peak HR 120 bpm
- No symptoms
- 9 METs

F.I.T.T.

Warm Up	5–10 min to hit THR of 20–35% HRR			
Conditioning	Frequency	5 x (ideally 7 x) / week		
	Intensity	40 - 80% of HRR		
Conditioning	Time	30 – 60 minutes		
	Туре	Aerobic and Resistance		
Cool Down	5-10 min at a THR of <60% of max HR			

CACR Guidelines 3rd Ed.

Prescribing Intensity

- Using HRR technique
- Can also use VO2 Reserve technique

%HR max used too, though newer guidelines use HRR

Heart Rate

Lower

Table 3: Relative intensities for aerobic exercise prescription (for activities lasting up to 60 minutes)*

Intensity		% HRR	% HR _{max}	15-category RPE scale†	Category- ratio RPE scale†	Breathing rate	Body temperature	Example of activity
Very light effort		< 20	< 35	< 10	< 2	Normal	Normal	Dusting
Light effort	Range	20-39	35-54	10-11	2-3	Slight increase	Start to feel warm	Light gardening
Moderate effort	for	40-59	55-69	12-13	4-6	Greater increase	Warm	Brisk walking
Vigorous effort	health	60-84	70-89	14-16	7-8	More out of breath	Quite warm	Jogging
Very hard effort		> 84	> 89	17-19	9	Greater increase	Hot	Running fast
Maximal effort		100	100	20	10	Completely out of breath	Very hot, perspiring heavily	Sprinting all-out

Note: HRR = heart rate reserve, HR_{max} = maximum heart rate, RPE = patient's rating of perceived exertion.

*Created from information provided in the handbook for Canada's Physical Activity Guide to Healthy Active Living,²⁶ and the American College of Sports Medicine's guidelines for exercise testing and prescription.⁹

†See Table 4 for details about the RPE scales.

Waburton et al. CMAJ 2006;174:961

Resistance Training

- Not Mr. Universe type weight training
- Light weights, 12–15 repetitions

Frequency	2–3 x / week
Intensity	Upper body: 30–40% of 1 RM Lower body: 40–50% of 1 RM
Time	1-3 sets, 12-15 repetitions
Туре	Resistance

RM = repetition maximum

Smoking Cessation?

What options are available for extra smoking cessation support?

Post ACS Depression

- Mr. A states he is sleeping less, has more fatigue and feels his mood has worsened
- How does this alter his CR program?

Questions?

Case #2

- Mrs. C 69 year old female
- PMHx DM, HTN, ACSx2 prior
- Now admitted anterior STE-ACS
- hsTnT 1500, EF 20%
- NYHA II
- Euvolemic now as outpatient
- Referred to CR

HF with Reduced EF

- What are some added CR issues with HF with reduced EF?
- Safety?
- Exercise prescription adjustments?
- Impact of devices?

HF-ACTION

O'connor et al. JAMA 2009;301:1439

RCT

- 2331 stable HF pts
- \blacktriangleright LVEF < 35%
- NYHA II–IV
- CR vs. Usual Care
 - 36 sessions moderate intensity training (60–70% $\mathbf{H}\mathbf{R}\mathbf{R}$

ORIGINAL CONTRIBUTION

Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure HF-ACTION Randomized Controlled Trial

Christopher M. O'Connor, MD
David J. Whellan, MD, MHS
Kerry L. Lee, PhD
Steven J. Keteyian, PhD
Lawton S. Cooper, MD, MPH
Stephen J. Ellis, PhD
Eric S. Leifer, PhD
William E. Kraus, MD
Dalane W. Kitzman, MD
James A. Blumenthal, PhD
David S. Rendall, PA-C
Nancy Houston Miller, RN, BSN
Jerome L. Fleg, MD
Kevin A. Schulman, MD
Robert S. McKelvie, MD, PhD
Faiez Zannad, MD, PhD
Ileana L. Piña, MD
for the HF-ACTION Investigators

EART FAILURE IS A MAJOR AND increasingly common cardiovascular syndrome, and is the end result of many cardiovascular disorders. An estimated 5 million patients in the United States have heart failure, and an additional 500 000 new cases are diagnosed annually.1 Recent data indicate that the prevalence of heart failure in the Medicare population alone exceeds 4 million, with an annual ageadjusted incidence rate of 29 cases per 1000 person-years.2 Although evidencebased pharmacological and device therapies decrease mortality, hospitalizations, and heart failure symptoms and improve quality of life, many patients treated with these regimens often re-

Context Guidelines recommend that exercise training be considered for medically stable outpatients with heart failure. Previous studies have not had adequate statistical power to measure the effects of exercise training on clinical outcomes.

Objective To test the efficacy and safety of exercise training among patients with heart failure

Design, Setting, and Patients Multicenter, randomized controlled trial of 2331 medically stable outpatients with heart failure and reduced election fraction. Participants in Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) were randomized from April 2003 through February 2007 at 82 centers within the United States, Canada, and France; median follow-up was 30 months.

Interventions Usual care plus aerobic exercise training, consisting of 36 supervised sessions followed by home-based training, or usual care alone.

Main Outcome Measures Composite primary end point of all-cause mortality or hospitalization and prespecified secondary end points of all-cause mortality, cardiovascular mortality or cardiovascular hospitalization, and cardiovascular mortality or heart failure hospitalization.

Results The median age was 59 years, 28% were women, and 37% had New York Heart Association class III or IV symptoms. Heart failure etiology was ischemic in 51%, and median left ventricular ejection fraction was 25%. Exercise adherence decreased from a median of 95 minutes per week during months 4 through 6 of follow-up to 74 minutes per week during months 10 through 12. A total of 759 patients (65%) in the exercise training group died or were hospitalized compared with 796 patients (68%) in the usual care group (hazard ratio [HR], 0.93 [95% confidence interval {CI}, 0.84-1.02]; P=.13). There were nonsignificant reductions in the exercise training group for mortality (189 patients [16%] in the exercise training group vs 198 patients [17%] in the usual care group; HR, 0.96 [95% CI, 0.79-1.17]; P=.70), cardiovascular mortality or cardiovascular hospitalization (632 [55%] in the exercise training group vs 677 [58%] in the usual care group; HR, 0.92 [95% CI, 0.83-1.03]; P=.14), and cardiovascular mortality or heart failure hospitalization (344 [30%] in the exercise training group vs 393 [34%] in the usual care group; HR, 0.87 [95% CI, 0.75-1.00]; P=.06). In prespecified supplementary analyses adjusting for highly prognostic baseline characteristics, the HRs were 0.89 (95% CI, 0.81-0.99; P=.03) for all-cause mortality or hospitalization, 0.91 (95% CI, 0.82-1.01; P=.09) for cardiovascular mortality or cardiovascular hospitalization, and 0.85 (95% CI, 0.74-0.99; P=.03) for cardiovascular mortality or heart failure hospitalization. Other adverse events were similar between the groups.

Conclusions In the protocol-specified primary analysis, exercise training resulted in nonsignificant reductions in the primary end point of all-cause mortality or hospitalization and in key secondary clinical end points. After adjustment for highly prognostic predictors of the primary end point, exercise training was associated with modest significant reductions for both all-cause mortality or hospitalization and cardiovascular mortality or heart failure hospitalization.

Trial Registration clinicaltrials.gov Identifier: NCT00047437 JAMA, 2009;307(14):1439-1450

tors are listed at the end of this article. 17969, Durham, NC 27715 (oconn002@mc.du Corresponding Author: Christopher M. O'Connor, .edu).	_	The Author Affiliations and HF-ACTION Investiga- tors are listed at the end of this article. Corresponding Author: Christopher M. O'Connor,	MD, Duke Clinical Research Institute, PO 8 17969, Durham, NC 27715 (oconn002@mc.du .edu).
--	---	---	---

©2009 American Medical Association. All rights reserved.

See also p 1451.

(Reprinted) JAMA, April 8, 2009-Vol 301, No. 14 1439

www.jama.com

HF-ACTION

	HR	95% CI	P value
All cause mortality and hospitalization	0.89	0.81-0.99	0.03
CV mortality and HF hospitalization	0.85	0.74-0.99	0.03

O'conner et al. JAMA

HF-ACTION

	Media	Median (IQR)		
	Usual Care	Exercise Training	<i>P</i> Value	
Baseline to 3 mo ^a Distance of 6-minute walk, m (n = 1835)	5 (–28 to 37)	20 (–15 to 57)	<.001	
Cardiopulmonary exercise time, min (n = 1914)	0.3 (-0.6 to 1.4)	1.5 (0.3 to 3.0)	<.001	
Peak oxygen consumption, mL/kg/min (n = 1870)	0.2 (-1.2 to 1.4)	0.6 (–0.7 to 2.3)	<.001	
Baseline to 12 mo ^b Distance of 6-minute walk, m (n = 1444)	12 (–30 to 55)	13 (–28 to 61)	.26	
Cardiopulmonary exercise time, min (n = 1476)	0.2 (–1.0 to 1.7)	1.5 (0 to 3.2)	<.001	
Peak oxygen consumption, mL/kg/min (n = 1442)	0.1 (-1.5 to 1.8)	0.7 (–1.0 to 2.5)	<.001	
Abbreviation: IQR, interquartile range. ^a Complete case analysis. Expected 2284 patie ^b Complete case analysis. Expected 2159 patie	ents at 3 months. ents at 12 months.			

O'conner et al. JAMA

HF-ACTION: Quality of Life

Figure 2. Predicted Mean Health Status Trajectories by Treatment Group

P=.001 for treatment effect for both ischemic and nonischemic heart failure. Error bars indicate standard errors at each time point.

Kansas City Cardiomyopathy Questionaire (KCCQ)
23 questions
Score 0-100

Cochrane Review 2010

Exercise based rehabilitation for heart failure (Review)

Davies EJ, Moxham T, Rees K, Singh S, Coats AJS, Ebrahim S, Lough F, Taylor RS

- 19 trials
- 3647 systolic HF patients
- CR vs usual care
- Trend towards mortality benefit > 1yr
- Reduced hospitalization

Cochrane Review 2010

Exercise based rehabilitation for heart failure (Review)

Davies EJ, Moxham T, Rees K, Singh S, Coats AJS, Ebrahim S, Lough F, Taylor RS

Analysis I.6. Comparison I All exercise interventions versus usual care, Outcome 6 Health related quality of life - MLWHF.

Review: Exercise based rehabilitation for heart failure

Comparison: I All exercise interventions versus usual care

Outcome: 6 Health related quality of life - MLWHF

Study or subgroup	Treatment		Control Mean Difference W		Mean Difference		Mean Difference Weight		Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	IV,Rando	om,95% Cl		IV,Random,95% CI	
Austin 2005	95	22.9 (14.7)	94	36.9 (21.3)			20.0 %	-14.00 [-19.22, -8.78]	
Belardinelli 1999	48	39 (20)	46	52 (20)	·•		16.1 %	-13.00 [-21.09, -4.91]	
Dracup 2007	87	35.7 (23.7)	86	43.2 (26.5)			16.9 %	-7.50 [-14.99, -0.01]	
Koukouvou 2004	16	34.1 (13)	19	45.2 (9)			16.8 %	-11.10 [-18.65, -3.55]	
McKelvie 2002	57	-3.4 (18.1)	67	-3.3 (13.9)	-		19.3 %	-0.10 [-5.86, 5.66]	
Passino 2006	44	32 (26.5)	41	53 (32)	·		10.9 %	-21.00 [-33.54, -8.46]	
Total (95% CI)	347		353		-		100.0 %	-10.33 [-15.89, -4.77]	
Heterogeneity: Tau ² =	33.04; Chi ² =	17.49, df = 5 (P =	= 0.004); l ² =	71%					
Test for overall effect:	Z = 3.64 (P = 0	0.00027)							
					-20 -10 (0 10 20			
				Fa	vours expercise	Favours contro	ol		

HF-ACTION: Safety

Died after exercise¶

Table 3	Summary of Selected Adverse Events in the HF-ACTION Study*			
	Adverse Events	Usual Care (n = 1,171)†	Exercise Training (n = 1,159)	
Pre-specified cardiovascular adverse events				
Worsening HF		340 (29.0)	303 (26.1)	
Myocardial infarction		45 (3.8)	41 (3.5)	
Unstable angina		88 (7.5)	86 (7.4)	
Serious adverse arrhythmia‡		164 (14.0)	167 (14.4)	
Stroke		28 (2.4)	33 (2.8)	
Transient ischemic attack		23 (2.0)	20 (1.7)	
Any of the above events		471 (40.2)	434 (37.4)	
General adverse events				
Hospital stay for fracture of hip or pelvis		7 (0.6)	3 (0.3)	
Outpatient fracture repair		20 (1.7)	13 (1.1)	
ICD firing§		151/644 (23.4)	142/641 (22.2)	
Hospital stay after exercise		22 (1.9)	37 (3.2)	

5 (0.4)

5 (0.4)

Case #3

- Mr. O, 83 year old male
- PMHx Parkinson's disease, autonomic dysfunction
- Admitted with ACS. TnT 115. EF normal
- Declined angio due to preference/frailty
- Ambulates with 4WW

Wellness Institute and Rehfit

- Should this patient be referred to CR?
- What are some complicating factors in very elderly or frail when considering or delivering CR?

Case #4

- Mrs. F, 65 year old female
- PMHx diabetes, HTN, PAD
- Lives in Peguis MB
- Admitted in Percy Moore Hospital for ACS. Transferred for angio, PCI RCA. EF 40%. Repatriated

Wellness Institute and Rehfit

- What are some options for CR in the rural patient?
- What are some barriers to delivering CR in this cohort?

Cochrane Database of Systematic Reviews

Home-based versus centre-based cardiac rehabilitation (Review)

Taylor RS, Dalal H, Jolly K, Zawada A, Dean SG, Cowie A, Norton RJ

2015;Issue 8.Art.No.CD007130

Home-based versus centre-based cardiac rehabilitation (Review)

Taylor RS, Dalal H, Jolly K, Zawada A, Dean SG, Cowie A, Norton RJ

- I7 RCT's home-based CR vs centre-based CR
- Year 2001 2014
- 2 172 patients
- Low risk
- Mostly excluded residual ischemia, arrhythmias and HF
- > 345 NYHA II-III

Home-based versus centre-based cardiac rehabilitation (Review)

Taylor RS, Dalal H, Jolly K, Zawada A, Dean SG, Cowie A, Norton RJ

		95% CI
Total mortality	RR 0.79	0.43 - 1.47 (p=0.46)
Cardiac events	NP	NP
Exercise capacity	SMD -0.10	-0.29 - 0.08 (p=0.29)
Total cholesterol	MD +0.07	-0.24 - 0.11 (p=0.47)
Systolic blood pressure	MD +0.19	-3.37 - 3.75 (p=0.92)
Program completion	RR 1.04	1.01 - 1.07 (p=0.009)

Summary

- Cardiac rehab indicated for all ACS patients
- CR patients get a tailored exercised regimen
- Multifaceted approach to achieve healthy lifestyle behavior
- CR for HFrEF is safe and efficacious
- CR is possible for patients with low functional capacity
- There are alternative methods to deliver CR

Special Thanks

- Wellness Institute and Rehfit staff
- Gordon and Elizabeth for their time
- Michelle Meade

Last questions?

Extra slides

Resistance Training

- Concerns of high BP spikes no longer valid*
- CHEP guidelines 2013 approve resistance training
- Combination RT + aerobic training may further increase VO2max compared to aerobic training alone**

*Rossi et al. CJC 2013;29:622 **Marzolini et al. Med Sci Sports Exer 2008;40:1557