# Stroke In Children

Dr. Mubeen F. Rafay Associate Professor, Clinician Scientist Section of Neurology, Department of Pediatrics & Child Health Children's Hospital, Winnipeg, University of Manitoba

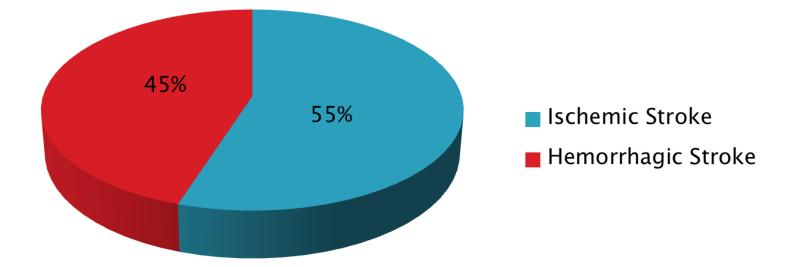




### Disclosures



## **Objectives**


- Understand the definitions and terminologies used in childhood stroke
- Recognize the age-specific clinical presentations and mimics of childhood stroke
- List common risk factors and initial diagnostic work-up required to confirm the diagnosis
- Review current treatment approaches, and
- Appreciate the long term outcome of childhood stroke

## Pediatric Stroke

Stroke occurring anytime between in-utero (20 weeks gestation) to 18 years of age.

- Childhood Stroke: Stroke occurring over 28 days of postnatal life to 18 years of age.
- Perinatal Stroke: Stroke occurring anytime between 20
  weeks gestational age and 28 days of postnatal life.

### **Pediatric Stroke**



deVeber G, Peds Neurology 2019, Ferriero DM et al. AHA, Stroke 2019

### Epidemiology

- Overall Annual Stroke Incidence
  - 3 25/100,000 children/year in developed countries
  - Highest in the perinatal period, 25-30% of all strokes, 1/2700-5000 live births/year

#### Hemorrhagic Stroke

1 to 1.7 in 100000 children/year, common in neonates at least 1 in 6300 live births

Ischemic Stroke 1 – 2/100, 000 children

• AIS: Children 1.2 - 8/100,000 children/year

Neonates 10.2 - 29/100,000 or 1/4000 live births/year

• CSVT: 0.67/100,000 children/year, 43% neonates, over half one year old

deVeber G, Peds Neurology 2019, Ferriero DM et al. AHA, Stroke 2019

### Ischemic Perinatal Stroke (IPS)

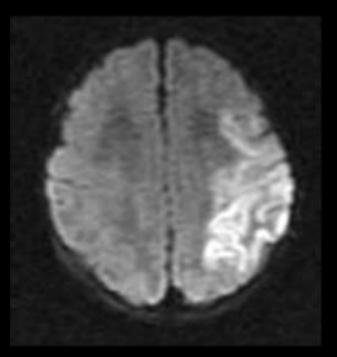
A group of heterogeneous conditions in which there is focal disruption of cerebral blood flow secondary to arterial or cerebral venous thrombosis or embolization between 20 weeks of fetal life through the 28th postnatal day confirmed by neuroimaging or neuropathologic studies.

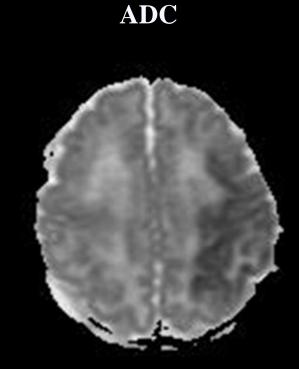
> NICHD-NINDS Perinatal Stroke Workshop Pediatrics 2007; 120: 609-616

## **Categories of IPS**

Following three sub-categories were suggested:

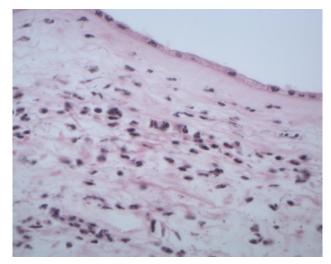
- Fetal ischemic stroke diagnosed before birth by using fetal imaging methods or in stillbirths on neuropathology
- Neonatal arterial ischemic stroke diagnosed after birth and on or before the 28th postnatal day (including in preterm infants)
- Presumed perinatal ischemic stroke or PPIS diagnosed in infants in whom it is presumed but not certain that the ischemic event occurred sometime between the 20<sup>th</sup> week of fetal life through the 28<sup>th</sup> postnatal day.


NICHD-NINDS Perinatal Stroke Workshop Pediatrics 2007

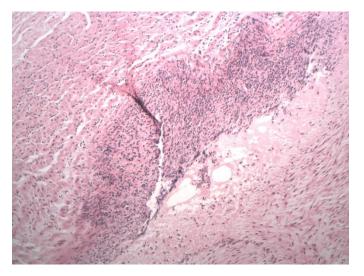

### Neonatal Arterial Ischemic Stroke (NAIS)

- Acute presentation in the neonatal period (0-28 days)
  - Seizures, mostly focal in >80%, typically after 24 hours
  - Hemiparesis / monoparesis, in about 10% -20%
  - Irritability, lethargy, vomiting and decreased level of consciousness less common, > 30%
- Presence of acute or sub acute infraction on neuroimaging

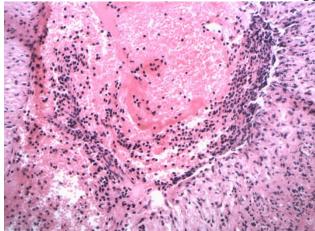
## Neonatal Ischemic Stroke


DWI






Term baby with focal, right-sided, tonic-clonic seizures at 3 days of life


### **Placental Histopathology**



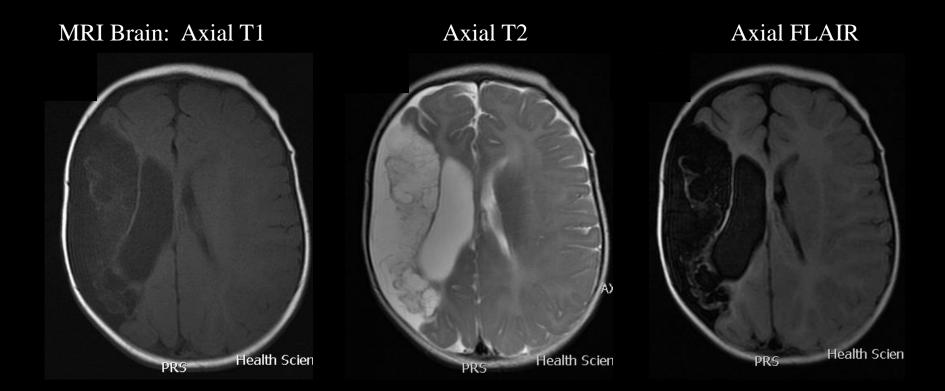
Neutrophilic infiltrate within the amnion and chorion



Inflammatory material within the placental & umbilical vessels



Layering of fibrin, inflammatory & red blood cells (lines of Zahn) - a thrombus


### Presumed Perinatal Ischemic Stroke (PPIS)

- Delayed presentation Almost all
  - Pathological handedness
  - Other focal deficits: Awkward gait, difficulty walking or failure to achieve developmental milestones
  - Seizures typically focal in later years of life
  - Incidental finding on neuroimaging
- Acute presentation Rare

- Seizures
- Hemiparesis / monoparesis very rare
- Presence of old infarction corresponding to an arterial territory on

neuroimaging

### Presumed Perinatal Ischmeic Stroke (PPIS)



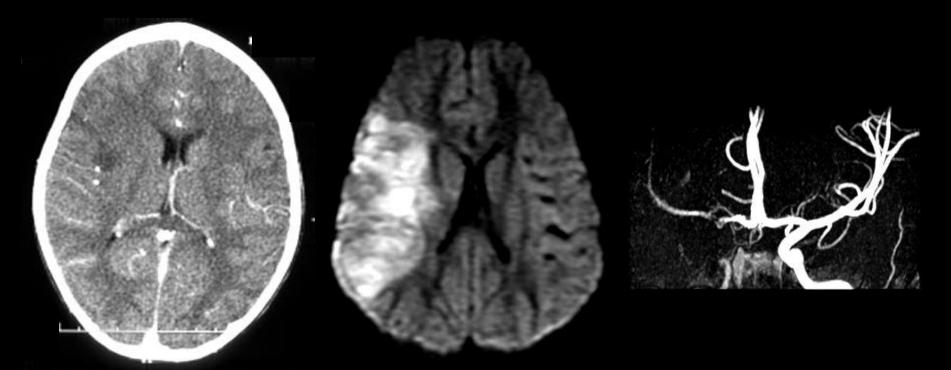
#### 6 months old girl with infantile spasms and right hand dominance

### Perinatal Ischemic Stroke Etiologies & Risk factors

- Maternal Factors
  - Infection
  - Thrombophilia, including antiphospholipid antibodies
  - Pre-eclampsia
  - Cocaine use
  - Smoking
  - History of infertility
- Placental Factors
  - Placental Infarction
  - Abruption / Insufficiency
    - Chorioamnionitis

- Obstetrical Factors (Mother & Infant)
  - Arterial injury during delivery due to head and neck mechanical trauma
  - Need for resuscitation or low Apgar score at 5 minutes
- Fetal/Infant Factors
  - Congenital heart disease up to 24%
  - Infection Meningitis, sepsis
  - Thrombophilia uncommon, unless strong maternal/family history

Leung ME & Rivkin M, Peds in Review, 2016


# Childhood Arterial Ischemic Stroke (Non-neonates)

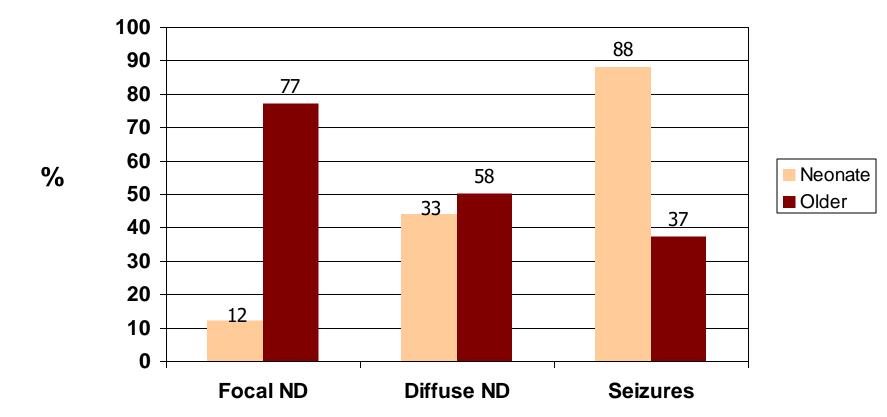
### **Childhood Arterial Ischemic Stroke**

Axial CT Scan

#### Axial Diffusion MRI

#### MRA




3 yr-old girl with left sided focal seizures, weakness and slurred speech

### Clinical Presentation Infants and Older Children

- Any sudden neurological deficit 70%
  - Hemiparesis with or without facial weakness
  - Speech problems
  - Sensory deficits
  - Any other motor deficits: ataxia, balance problems
- Seizures, often focal > 45%
- ▶ HA, fever, altered level of alertness > 50% children
- Preceding TIA may have occurred in ~30%

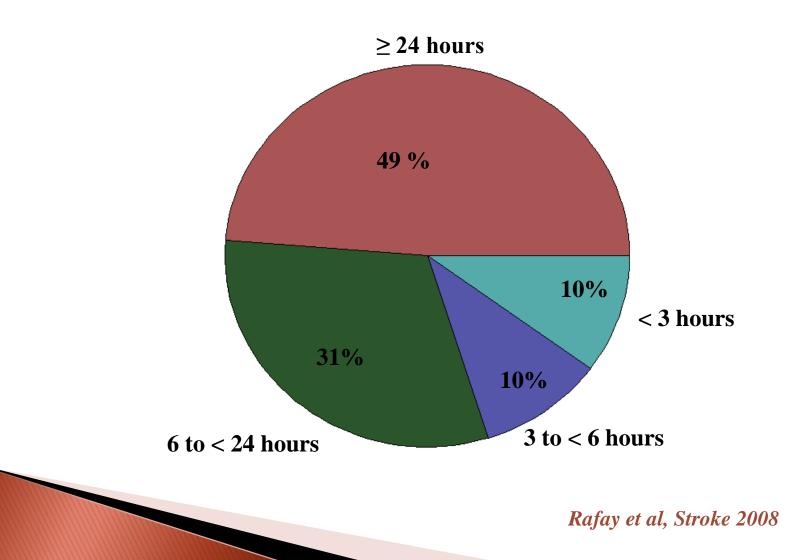
Ferriero DM et al. AHA, Stroke 2019

### **Clinical Presentation**

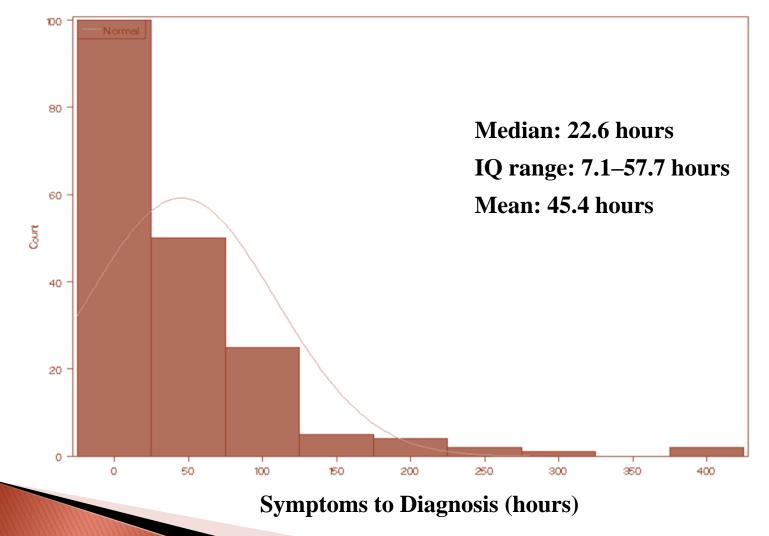


CPISR Study Group, deVeber G, Peds Neurology 2019

### **Challenges in Childhood Stroke**


Presentation

- Non focal presentation (seizures, lethargy, headache)
- Age related, non-specific, inability to report subtle symptoms
- Less than 25% present within 3-6 hours
- Limited exam in irritable young children
- Infrequent in children decreased awareness/Misconception...
  "Does not occur in children", "benign in nature"
- Delay in considering stroke as a possibility, in children presenting with focal neurological deficits


## **Challenges in Childhood Stroke**

- Existence of various *Stroke Mimics*, that are common in children
  - Seizures with ictal or post-ictal Todd's paresis
  - Hemiplegic migraine
  - Focal demyelination, abscess, tumors
  - Intracranial infection, trauma
  - Non organic somatoform disorder
- Neuroimaging access challenges:
  - Availability of urgent CT/MRI
  - Need for anesthesia

# Total Delay to Diagnosis in Childhood AIS (N=189)



# Total Delay to Diagnosis in Childhood AIS (N=189)



Rafay et al, Stroke 2008

### Delay to AIS Diagnosis in Children

- > Diagnosis of AIS was missed in over 40%.
- 10 30% of children have had a 'missed' preceding TIA

Rafay et al, Stroke 2008

\*\*\*Even if the diagnosis is made, underlying causes and risk factors are complex, poorly understood and differ from those in adults.

### **Etiologies & Risk Factors**

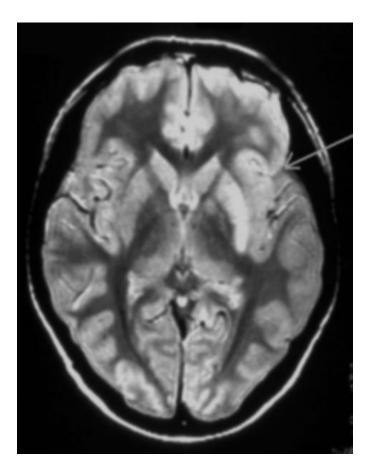
- Many associations, risk factors and causations described with childhood stroke
- Majority have multiple or overlapping risk factors, up to 50%
- Idiopathic, in up to 30%

### **Etiologies & Risk Factors**

#### Major three

- Arteriopathies over 50%, including infectious and traumatic
- Cardiac disorders up to 30%, cyanotic HD, perioperative, procedure related, ASD/PFO
- Prothrombotic states & disorders -18 22%, Acquired > congenital

#### Others


- Infections: Meningitis/sepsis, head and neck infections
- Hematological disorders anemia, sickle cell anemia -11% by age 20
- Genetic/metabolic Homocystinuria, Fabrys, mitochondrial disorders
- Toxins/drugs (e.g. cocaine, radiation)
- Malignancy: (e.g. leukemia, solid tumors)
- Congenital disorders: PHACES, NF1
- Other Emboli: fat, tumor, foreign body, air, amniotic

Ferriero DM et al. AHA, Stroke 2019

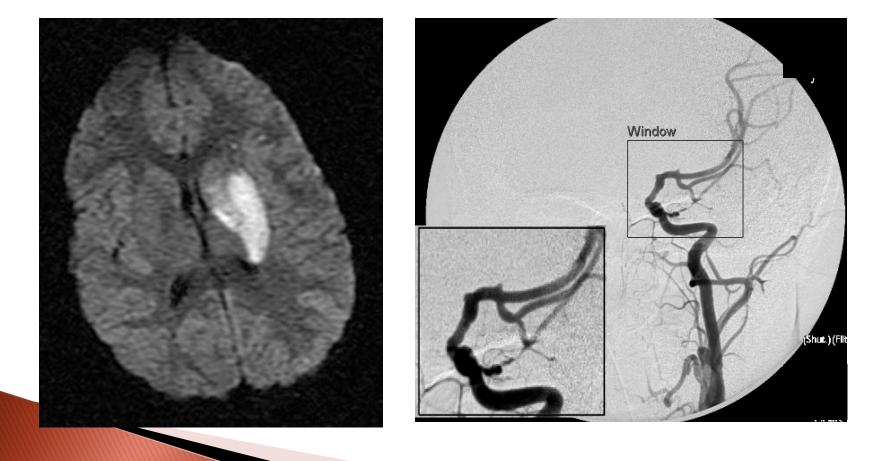
### Arteriopathies in Children with AIS

- Intracranial focal cerebral arteriopathy (FCA) 45%
  - Post varicella angiopathy (PVAR) 18%
  - Transient cerebral arteriopathy (TCA)7%
  - Intracranial arterial dissection less common
- Cervical arterial dissection (CAD) 7.5% –19%
- Moyamoya 6% 12%
- CNS vasculitis 5% 12%
- Non specific arteriopathies 35%

Ferriero DM et al. AHA, Stroke 2019, Leung ME & Rivkin M, Peds in Review, 2016 15 year old girl with sudden onset headache, altered consciousness, right hemiplegia & aphasia and history of head/neck trauma 1 week ago





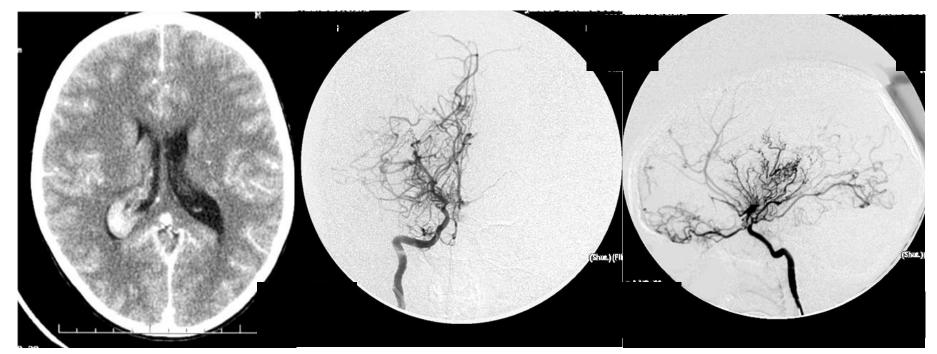



Conventional Catheter Angiogram

# 8 yrs-old boy with right hemiplegia and h/o chicken pox 6 months ago

**Diffusion MRI** 

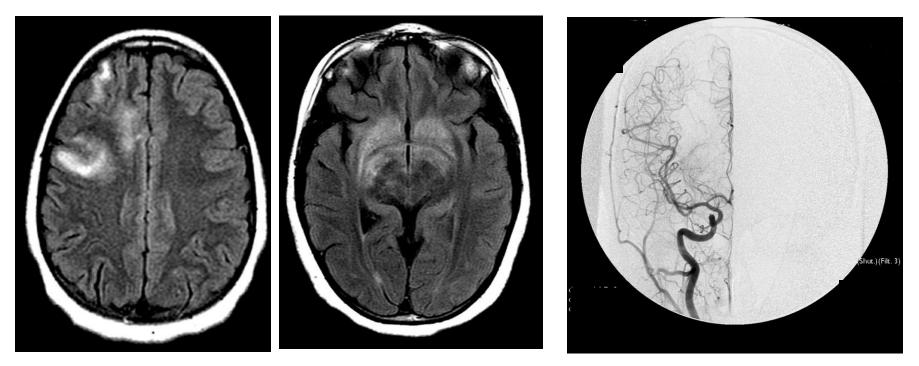
Catheter angiogram: LICA injection




# 8-yr old boy with severe headache and persisting vomiting

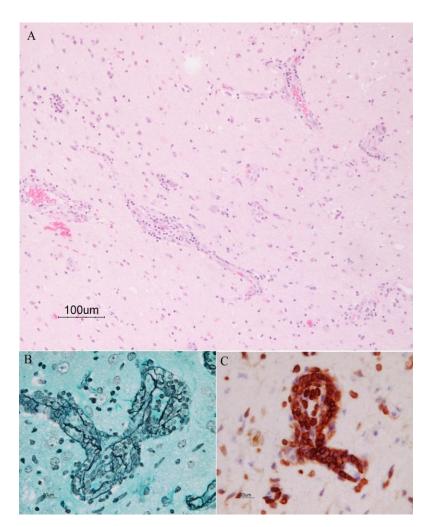
#### Contrast CT

**RICA** Injection


Conventional Angiogram jection LICA Injection



# 10 yrs-old girl with left hemiplegia, hemineglect and memory problems


#### Axial FLAIR MRI

#### **Conventional Angiogram**



Rafay et al, CJNS, 2004

# Pathology



Rafay et al, CJNS, 2004

### Diagnosis

- Clinical suspicion
- Early and specific neuroimaging



# **Clinical Suspicion for AIS**

#### Personal history

- History of trauma, recent infections -history of chicken pox or any other viral exanthem
- Co-morbid diagnoses such as cardiac disorders, sickle
  cell disease or other hematologic disorders or
  syndromes
- Birth history and maternal history for perinatal stroke
- Family history of early stroke/MI/clotting disorders

## **Confirmation of Stroke**

- Parenchymal brain Imaging
  - Head CT  $\rightarrow$  misses diagnosis in 15% of children with AIS
  - Brain MRI with DWI, FLAIR, GRE or SWI, T1, and T2
    - DWI very sensitive for early cytotoxic edema
- Head and neck Vascular Imaging
  - CT angiogram

- MR angiogram esp. gadolinium enhanced
- MR Fat saturation: for intra-luminal clot in arterial dissection

### **Investigations for Pediatric AIS**

- Baseline: CBC, PTT, INR, glucose, lytes
- Inflammatory and Infectious: ESR, CRP, ANA
- ▶ ECG, ECHO +/- TTE with bubble study
- Thrombophilia work up:

- Levels: Protein C/S, antithrombin III, plasminogen, fibrinogen, lipoprotein a, homocysteine, APCR, antiphospholipid antibodies, lupus anticoagulant
- Mutations: FVL and prothrombin gene
- Placental Pathology in neonatal stroke
- Transcranial Doppler in Sickle cell disease
- Idiopathic stroke with positive bubble study 4 extremity Doppler ultrasound
- Digital subtraction Catheter Angiogram in few idiopathic cases

### Treatment of Children with Acute AIS

#### Acute Treatment

- General Supportive measures/Neuroprotective Care
- Hyper acute interventions (Thrombolysis)
- Stroke Prevention –Anticoagulant versus antiplatelet

- Long term treatment or Stroke prevention
- Stroke Rehabilitation

# Neuroprotection Care of Children with Acute Stroke

- Airway minority, RSI issues
- Breathing avoid high PEEP, pCO<sub>2</sub> changes
- Circulation CPP = MAP ICP
- Sedation midazolam
- Seizures control promptly, prophylaxis?
- Temperature euthermia
- Glucose euglycemic
- ICP 3–5 days, routine +/- surgery?
- Aspiration / Nutrition NG, swallow study

Ferriero DM et al. AHA, Stroke 2019, Leung ME & Rivkin M, Peds in Review, 2016

### **Pediatric Thrombolysis**

- Hyper acute therapies remain controversial due to lack of adequate feasibility and safety data.
  - Pediatric evidence based on case reports/series
  - IV and IA tPA possibly successful and safe, but biased data
- Thrombolysis can be considered in select cases persistent disabling neurological deficits and radiographically confirmed cerebral large artery occlusion.
- Reasonable to limit to centers with hyper acute pediatric stroke care consideration of this intervention to children meeting certain criteria.

Ferriero DM et al. AHA, Stroke 2019, Leung ME & Rivkin M, Peds in Review, 2016

## **AIS Prevention**

- LMWH or UFH considered in children for 5-7 days after an AIS, pending further evaluation to determine the cause of the stroke.
- Anticoagulation with LMWH or warfarin for 3 to 6 months or longer for stroke resulting from cardiac embolism (including neonates) or in individuals with a prior thrombosis or a known prothrombotic disorder.
- In all other children, maintenance therapy with Aspirin dosed at 3 to 5 mg/kg/day.

(Class IIb, Level of Evidence C)

Ferriero DM et al. AHA Guidelines Stroke 2019

### Sickle Cell Disease

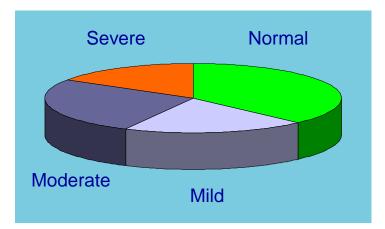
- For primary stroke prevention, annual screening with TCD
  - Children with abnormal TCD periodic regular transfusions to reduce sickle hemoglobin to 30% or hydroxyurea therapy after
     1 year of regular blood transfusions
- For secondary stroke prevention with confirmed AIS
  - Optimal hydration, correction of hypoxemia and hypotension
  - Regular blood transfusion program to keep the sickle hemoglobin to <30%, with acute AIS <15%</li>
  - Measures to prevent iron overload

(Class I, Level of Evidence A)

Consider bone marrow transplantation in a clinical trial setting

Ferriero DM et al. AHA, Stroke 2019, Leung ME & Rivkin M, Peds in Review, 2016

### Recommendations for Rehabilitation After Pediatric Stroke


- Age-appropriate rehabilitation and therapy programs are indicated for children after a stroke
  - Constraint induced movement therapy (Level of Evidence A)
- Psychological assessment to document cognitive and language deficits is useful for planning therapy and educational programs after a child's stroke

(Class I, Level of Evidence C)

Ferriero DM et al. AHA, Stroke 2019

### **Outcome of Pediatric Stroke**

- Etiology and age dependent
- Children: 70% have neurological deficits
  - 52 % mild
  - 33% moderate
  - 15% severe
- Neonates:
  - 68% exhibit cerebral palsy + 1 additional disability in 55%
  - 60% cognitive or speech impairment
  - 40–60% epilepsy
- Recurrence : 20–33% <1.2% neonates</p>
  - Mortality: 5–10%, up to 40% HS



Ferriero DM et al. AHA, Stroke 2019, Leung ME & Rivkin M, Peds in Review, 2016

## Summary

- Stroke under-recognized, yet common in children ~ 2-13 /100, 000/year
- Identified mechanism in ~ 50-80%
- ► High recurrence rates ~ 15-33%
- Presentation and Outcome etiology and age dependent
  - High morbidity 70% have neurological deficits
  - Significant mortality in 5-10%
- Preventable and potentially treatable condition

### **Suggested Readings**

- Management of Stroke in Neonates and Children.
  AHA guidelines. Ferriero DM et al. Stroke 2019
- *Stroke in Newborn Infants.* Nelson KB, Lynch JK. Lancet Neurol 2004;3:150–158.
- Stroke in Neonates and Children. Brenson-Leung ME & Rivkin M, Peds in Review, 2016