Basic EKG Patterns and Sources of Confusion F STT Changes

Interactive EKG Workshop Cardiology Day 2021

Dr. Liane Arcinas

Objectives

Through cases, learn about

- ST Segment and T Wave
- Typical findings of ST-elevation myocardial infarction in an EKG
- Ddx for ST-T changes with chest pain
- Ddx for ST-T changes without chest pain

ST Segment

- Isoelectric line after the QRS complex and the beginning of the T wave
- Represents the period between ventricular depolarization and repolarization

T Wave

Ventricular repolarization

Important causes of ST-T abnormality are myocardial ischemia, injury and infarction

EKG Termsschemia, Injury & Infarction

1. Ischemia

- Oxygen deprivation of myocardial tissue which can be caused by:
 - a. Coronary Occlusion (i.e. ACS)
 - b. Supply -demand imbalance (e.g. during tachyarrhythmia, sepsis, bleeding, etc)

ST segment depression, T wave flattening or inversion

EKG Termischemia, Injury & Infarction

2. Injury

ST-segment elevation

EKG Termsschemia, Injury & Infarction

- 3. Infarction
- Necrosis of myocardial tissue

Pathologic Q-wave

- Q wave > 0.04s (1 small box) and/or
- >25% R wave
- Needs to be in 2 contiguous leads

Reported as:

Old or age indeterminate if q wave alone

Acute or recent infarction if with concurrent ST-Elevation

EKG Findings of Acute STEMI

• ST-Elevation from the **J-poin** t in \geq 2 contiguous leads

- V2-V3
 - Male ≥ 40 yo: ≥ 2 mm
 - Male ≤ 40 yo: ≥ 2.5 mm
 - Female $\geq 1.5 \, \text{mm}$
- All other leads: 1 m m
- Right sided and posterior leads (V3R, V4R, V7, V8, V9): \geq 0.5 mm
- May or may not have an associated pathologic q wave

Localization of STEMI

STElevation on EKG: Differential Diagi

STEMI mimics; A mnemonic

Simon Mark Daleu (2018)

bberrant conduction (Left Bundle Branch Block)

nflammation (Pericarditis)

S pontaneous coronary artery dissection (SCAD)

| | lectrolytes (Hyperkalaemia)

evice (Ventricular paced rhythm)

Sodium channelopathy (Brugada Syndrome)

horacic aortic dissection

S pasm of the coronary arteries (Prinzmetal's/variant angina)

🔁 mbolism (Pulmonary)

Frief (Takotsubo cardiomyopathy)

yocardial infarction recently (leading to ventricular aneurysm)

nlarged ventricle (Left ventricular hypertrophy)

ormal for them (Early repolarisation)

emperature (Hypothermia)

STT ChangesthChest Pain

- ACS
 - UA, NSTEMI & STEMI
- Acute Pericarditis
- Aortic Dissection
- Pulmonary Embolism
- Spontaneous Coronary Artery Dissection
- Takotsubo Cardiomyopathy
- Coronary Spasm

STT ChangesthoutChest Pain

- Early repolarization
- LVH
- LBBB
- Ventricular Aneurysm
- Raised intracranial pressure
- Electrolyte Abnormalities (hyperkalemia)

Case 1

- 43 year old male
 - Past medical history: Asthma
 - Active 2-pack per day smoker
- Presented to community ER after 1 hour of acute onset substernal chest pain at rest.
 - Worst with exertion, radiation to L shoulder
 - With associated diaphoresis and fatigue.

ECG Case # 1

- Acute Anterolateral ST -Elevation Myocardial Infarction (STEMI)
- **b.** Left Ventricular Hypertrophy (LVH) with repolarization abnormality
- C. Acute Pulmonary Embolism
- **C**. Pericarditis

- Acute Anterolateral ST -Elevation

 Myocardial Infarction (STEMI)
- Left Ventricular Hypertrophy (LVH) with repolarization abnormality
- C. Acute Pulmonary Embolism
- C. Pericarditis

ECG Case # 1

Case 2

- 55-year-old female smoker
 - No past medical history or medications.
 - Family history of early CAD
 - Dad MI in his 40's
- Developed acute onset chest pressure, called EMS and had ECG performed as follows:

ECG CASE # 2

- a.Pericarditis
- b. Takotsubo Cardiomyopathy (Stress -induced cardiomyopathy)
- C.PE
- d.Inferoposterior STEMI
- e. Aortic Dissection

- a.Pericarditis
- b. Takotsubo Cardiomyopathy (Stress -induced cardiomyopathy)
- C.PE
- d. Inferoposterior STEMI
- e. Aortic Dissection

Localization of STEMI

Reciprocal Changes on EKG

- Don't just look for the ST Elevation, look for reciprocal changes too!
- Supports STEMI diagnosis and may signal larger area at risk!
 - Posterior anterior reciprocal changes
 - Anterior not much, some inferior dep on size
 - Inferior lateral reciprocal changes
 - Lateral <-> inferior or septal reciprocal changes
 - Septal posterior reciprocal changes

Case #3

18 y.o. healthy male with a normal physical exam with the following EKG:

FCG Wave-Mayer http://ecg.bidmc.harvard.edu Copucidht, 2006 Feth Israel Deargness Med Ctr

- a. Inferolateral STEMI
- b. Early Repolarization
- c. Left Bundle Branch Block
- d. Brugada Syndrome

- a. Inferolateral STEMI
- b. Early Repolarization
- c. Left Bundle Branch Block
- d. Brugada Syndrome

Early Repolarization Patter (Jpoint Elevation)

- Positive (Concave) Jpoint elevation
 ≥0.1 mVin 2 or more contiguous leads with a notched or slurred morphology
 - Most commonly in the inferior and/or lateral precordial leads but can be generalized
- Found in 5-18% of the population, usually in young males <50 yo
- Nearly always a benign incidental finding in <u>asymptomatic</u> patients.

Case # 4

18 yo male with recent viral illness (sore throat and runny nose)

- Sharp chest pain when taking deep breaths
- EKG as follows:

- Inferolateral STEMI
- Early Repolarization
- Left Bundle Branch Block
- Pericarditis
- Brugada Syndrome

- Inferolateral STEMI
- Early Repolarization
- Left Bundle Branch Block
- Pericarditis
- Brugada Syndrome

Pericarditis

ECG findings (Acute):

- Widespread concave ST elevation and PR depression throughout most of the limb leads (I, II, III, aVL, aVF) and precordial leads (V2 -6)
- Reciprocal ST depression and PR elevation in lead aVR(± V1)
- Sinus tachycardia is also common in acute pericarditis due to pain and/or pericardial effusion

Stages of Pericarditis ECG Changes

- Stage 1 widespread STE and PR depression with reciprocal changes in aVR(first two weeks)
- Stage 2 normalisation of ST changes; generalised T wave flattening (1 to 3 weeks)
- Stage 3 flattened T waves become inverted (3 to several weeks)
- Stage 4 ECG returns to normal (several weeks onwards)

Pericarditis	Definition and diagnostic criteria
Acute	Inflammatory pericardial syndrome to be diagnosed with at least 2 of the 4 following criteria: (1) pericarditic chest pain (2) pericardial rubs (3) new widespread ST-elevation or PR depression on ECG (4) pericardial effusion (new or worsening) Additional supporting findings: - Elevation of markers of inflammation (i.e. C-reactive protein, erythrocyte sedimentation rate, and white blood cell count); - Evidence of pericardial inflammation by an imaging technique (CT, CMR).

Case # 5

 81-year-old female that you follow in clinic for longstanding poorly controlled hypertension with the following EKG:

ECG Wave-Mayer http://ecg.bidmc.harvard.edu Copyright, 2005 Beth Israel Deaconess Med Ctr

- Acute Anterior Myocardial Infarction
- Benign Early Repolarization
- Left Ventricular Hypertrophy
- Brugada Syndrome

POLL

- Diagnosis
- Acute Anterior Myocardial Infarction
- Benign Early Repolarization
- Left Ventricular Hypertrophy
- Brugada Syndrome

Left Ventricular Hypertrophy

- Sokolow + Lyon
 - S V1+ R V5 or V6 > 35 mm
- Cornell criteria (Circulation, 1987;3: 565-72)
 - S V3 + R avl > 28 mm in men
- Modified Cornell
- S V3 + R avl > 20 mm in women
- R wave avL > 12 mm
- Framingham criteria (Circulation, 1990; 81:815-820)
 - R avl > 11mm, R V4-6 > 25mm
 - S V1-3 > 25 mm, S V1 or V2 +
 - R V5 or V6 > 35 mm, R I + S III > 25 mm
- Romhilt + Estes (Am Heart J, 1986:75:752-58)
 - Point score system

Left Ventricular Hypertrophy

"LVH with strain pattern"

Discordant ST
 segment depression
 asymmetrical T wave
 inversion in left sided leads

Case # 6

- 35 year-old male with no known medical history
- Asymptomatic
- Referred to you after he was incidentally noted to have a murmur on annual physical exam, with an EKG as follows:

ECG Wave-Mayen http://ecg.bidmc.harvard.edu Copyright, 2005 Beth Israel Deaconess Med Ctr

POLL

Diagnosis?

- Acute Anterior Myocardial Infarction
- Benign Early Repolarization
- Left Bundle Branch Block
- Brugada Syndrome

POLL

Diagnosis?

- Acute Anterior Myocardial Infarction
- Benign Early Repolarization
- Left Bundle Branch Block
- Brugada Syndrome

Criteria for LBBB

- 1. QRS duration >120 ms
- 2. Broad notched or slurred R wave in leads I, aVL, V5, and V6 and an occasional RS pattern in V5 and V6 attributed to displaced transition of QRS complex.
- 3. Absent q waves in leads I, V5, and V6
- 4. R peak time greater than 60 ms in leads V5 and V6
- 5. ST and T waves usually opposite in direction to QRS .

ACC/AHA 2009 Recommendations for Standardization and Interpretation of the ECG

Asymptomatic LBBB on EKG

Commonly a pre -existing marker of underlying structural heart disease.

- Evaluation for **underlying cause** (e.g. hypertension, heart failure, cardiomyopathies, myocarditis) is warranted.
- Typically would also include an **echocardiogram** for formal structural heart disease and EF assessment.

LBBB with clinisamptoms ischemia

Concordant ST Elevation

(ST elevated with positive QRS) and

excessive discordant ST depression is abnormal.

Sgarbossa ECG Criteria for LBBB	
Concordant STE≥1mm	5 points
STD ≥1 mm in V1 – V3	3 points
Discordant STE ≥5mm	2 points

Case # 6 Update

Echocardiogram revealed hypertrophic cardiomyopathy

CASE #7

59-year-old male ex-smoker with dyslipidemia and hypertension.

- Stutterring exertional, now at rest, retrosternal chest pain for the past 2 days
- Last episode 30 minutes ago, starting now again
- Troponin T 800

EKG done 25 minutes ago when chest - pain free:

POLL

Diagnosis and urgency?

- a. NSTEMI with Wellens' Syndrome: Needs emergent angiogram
- b. NSTEMI: Low risk inpatient angiogram once available
- c. Pericarditis: Non -urgent angiogram
- d. PE: Urgent CT PE
- e. Aortic Dissection: Emergent cardiac surgery

POLL

Diagnosis and urgency?

- a. NSTEMI with Wellens' Syndrome: Needs emergent angiogram
- b. NSTEMI: Low risk inpatient angiogram once available
- c. Pericarditis: Non -urgent angiogram
- d. PE: Urgent CT PE
- e. Aortic Dissection: Emergent cardiac surgery

Wellens Syndrome

- ECG pattern of deeply inverted T waves in V2 and V3, specific for critical, proximal Left Anterior Descending (LAD) stenosis
- Typically occurs when the patient is chest-pain free
- High risk for impending large anterior myocardial infarction

Wellens Syndrome

Type 1 (75% of Cases)

Deep, symmetrically inverted T waves in V2 and V3

Type 2 (25% of Cases)

Biphasic T waves (initially positive then negative) in V2 and V3

Case #8

- 75 yo male with recent anterolateral STEMI x 1 month ago. Treated with stent to LAD
- Presents in your GP clinic for outpatient follow -up. Feeling well. No further recurrence of chest pain since STEMI x 1 month ago.
- Labwork , including troponin, normal.

ECG Wave-Maven http://ecg.bidmc.harvand.edu Copyright, 2011 Beth Israel Deasoness Med Ctr

Poll

Diagnosis?

- a. Acute anterolateral STEMI
- b. LV aneurysm
- c. Benign early repolarization
- d. Pericarditis

Poll

Diagnosis?

- a. Acute anterolateral STEMI
- b. LV aneurysm
- c. Benign early repolarization
- d. Pericarditis

EKG findings of LV aneurysm

- Persistent ST elevation following an acute myocardial infarction
- Usually post acute STEMI, ST segments return to normal over up to 2 weeks. Q waves can persist. T waves can flatten or invert.
- This ECG pattern is associated with paradoxical movement of the ventricular wall (ventricular aneurysm).
- ECG Features of LV Aneurysm
- ST elevation seen > 2 weeks following an acute myocardial infarction.
- Most common in precordial leads. Concave or convex possible
- Usually associated with well -formed Q or QS waves.
- T-waves have a relatively small amplitude in comparison to the QRS complex (unlike hyperacute T -waves of acute STEMI).

Objectives

Through cases, learn about

- Typical findings of ischemia and ST -elevation myocardial infarction in an EKG
- Ischemia and STEMI mimics
- Differentiate a real STEMI from mimickers based on the patient's clinical presentation, exam and investigations

-END

• Questions?

ADDITIONAL CASES/ EKGs (ONLY IF V

EXTRA TIME)

EXTRA CASE # 1

- 69 year old male with HTN, Dyslipidemia, T2DM, Ex smoker, Prior CVA.
- Px to community hospital with 3 days of chest discomfort.
- Ongoing stuttering CP. BP 100 systolic, HR 75.

ECG:

Poll

Ischemia/ Risk?

- a. Ischemia: Yes/ High risk immediately transfer for PCI
- b. Ischemia: No/ Low risk no PCI needed
- c. Ischemia: Yes/ Low risk elective PCI
- d. Ischemia: No/ High risk no PCI needed

Poll

Ischemia/ Risk?

- a. Ischemia: Yes/ High risk immediately transfer for PCI
- b. Ischemia: No/ Low risk no PCI needed
- c. Ischemia: Yes/ Low risk elective PCI
- d. Ischemia: No/ High risk no PCI needed

Left Main Artery Stenosis: The Widowmaker

- Global Ischemia/Left Main Stenosis: May look like NSTEMI
- Presents with wide-spread ST depression with inverted T waves maximally in leads V(4 -5)
- Lead aVRST elevation (STE)
- A marker of worse outcomes as associated with Left Main stenosis/Large infarct. Treat as high risk!

Extra Case # 2

- 25 yo female brought to the ER rescuscitation room after overdosing with diltiazem
- Obtunded, 30 °C, 35 bpm, 85/40, 90% 15L NRB

Poll

Diagnosis?

- a. Inferior STEMI
- b. Hypothermia from diltiazem toxicity
- c. Pericarditis
- d. Takutsubo Cardiomyopathy
- e. Benign Early Repolarization

Poll

Diagnosis?

- a. Inferior STEMI
- b. Hypothermia from diltiazem toxicity
- c. Pericarditis
- d. Takutsubo Cardiomyopathy
- e. Benign Early Repolarization

Hypothermia and Osborave

 Positive deflection at the J point with a dome or hump configuration in the setting of hypothermia (typically Temp <30C)

J-wave (Osborn's wave)

J-wave (Osborn's wave)

Extra Case # 3

- 81 yo frail female presenting with chest pressure and shortness of breath after her husband passed away.
 - PMHX: Hypertension , anxiety disorder
- Troponin 350 -> 400

Likely etiology?

- a. Pericarditis
- b. Pulmonary embolism
- c. Takutsubo cardiomyopathy
- d. NSTEMI

Likely etiology?

- a. Pericarditis
- b. Pulmonary embolism
- c. Takutsubo cardiomyopathy
- d. NSTEMI

Takutsub@M

- Transient systolic dysfunction usually involving apex of heart in absence of any CAD, often following intense emotional/physical stressor "broken heart syndrome"
- Present with acute CP, CHF, elevated Troponins.
- ECG can get ST elevation (anterior), TW inversions, prolonged QT
- Rule out ACS, treat medically
- Recover by 1-3 months →good prognosis

Extra Case # 4

- 41 yo male acute onset of sharp tearing chest pain while driving
 - PMHX: Longstanding hypertension non -compliant with medications
- CXR and EKG as follows:

- PE
- Aortic dissection
- Ischemia from Left Main/Multivessel disease
- Pericarditis

- PE
- Aortic dissection
- Ischemia from Left Main/Multivessel disease
- Pericarditis

EKG during Aortic Dissection

- Normal
- Non-specific ST-T changes (49.7% of cases)
- ST-elevation (3.2% of cases)
 - Typically, inferior STEMI (Right Coronary Artery Dissection), but can be any STEMI
- Electrical alternans (tamponade)

Extra Case # 5

71M with recent anterior STEMI treated with lysis followed by stent to LAD.

While in hospital, acute onset of vertigo with EKG as follows:

Extra Case # 5

- Stent thrombosis of LAD stent
- Cerebral hemorrhage
- Ischemia from Left Main/Multivessel disease
- Takutsubo cardiomyopathy

- Stent thrombosis of LAD stent
- Cerebral hemorrhage
- Ischemia from Left Main/Multivessel disease
- Takutsubo cardiomyopathy

EKG findings of ICH

- Bleeding into confined space causes rise in ICP (intracranial pressure)
- ECG changes can reflect rising ICP
 - Diffuse/widespread T -Wave inversions
 - QT prolongation
 - Bradycardia: Mediated by *Cushing Reflex* indicated imminent brainstem herniation.
- Look for clinical clues as to why the change in ECG!