Systemic Therapy for Prostate Cancer: Advances in Context

Daniel Meyers, MD MSc

May 31, 2024

Presenter Disclosure

• I have no commercial or financial conflicts of interest to disclose

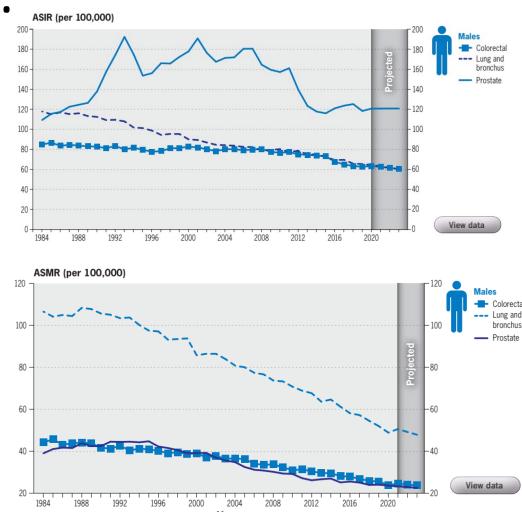
Mitigating Potential Bias

• Not applicable

Learning Objectives

- 1. Understand the general approach to treatment of advanced prostate cancer
- 2. Recognize that limitations in trial design can impede our ability to make true progress
- 3. Appreciate common toxicities of primary treatment classes

Some context...



Prostate	20.8%
Lung and bronchus	12.3%
Colorectal	10.9%
Bladder	8.2%
Non-Hodgkin lymphom	a 4.9%
Head and neck	4.7%
Kidney and renal pelvis	4.5%
Melanoma	4.5%
Pancreas	3.2%
Leukemia	3.2%
Liver and intrahepatic	
bile duct	2.6%
Stomach	2.2%

Males 46,500 Deaths	
Lung and bronchus	23.2%
Colorectal	11.2%
Prostate	10.5%
Pancreas	6.7%

Colorectal	11.2%
Prostate	10.5%
Pancreas	6.7%
Liver and intrahepatic	
bile duct*	4.7%
Esophagus	4.0%
Bladder	4.0%
Leukemia	3.9%
Non-Hodgkin lymphom	a 3.9%
Head and neck	3.3%
Brain/CNS	3.1%
Stomach	2.7%

MB 2024: 890 Cases 200 Deaths

2008

2012

2016

2020

Canadian Cancer Society (2023)

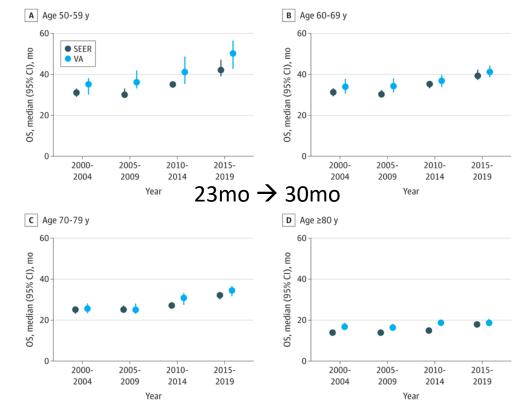
2024 Cancer Day for Primary Care

1988

1992

1996

2000

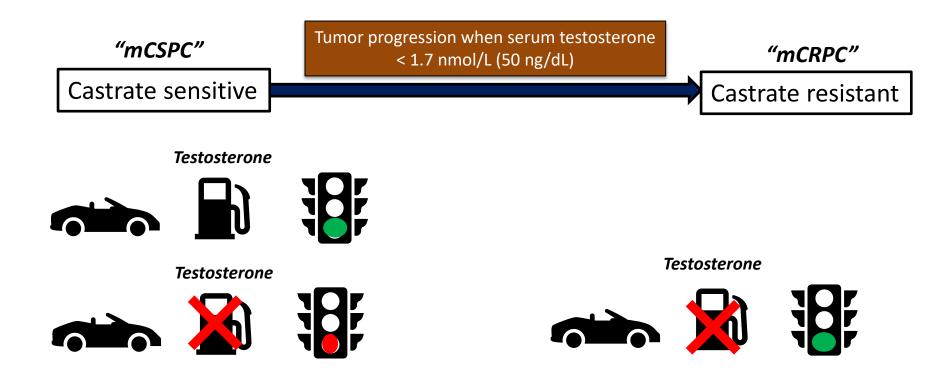

1984

Landmark trials 1L mCRPC

Author (year)	Intervention	mOS (95% CI)
Tannock (2004)	Docetaxel	19 (17-21)
Ryan (2015)	Abiraterone	35 (33-37)
Armstrong (2020)	Enzalutamide	36 (34-38)

Real World Outcomes: mCSPC

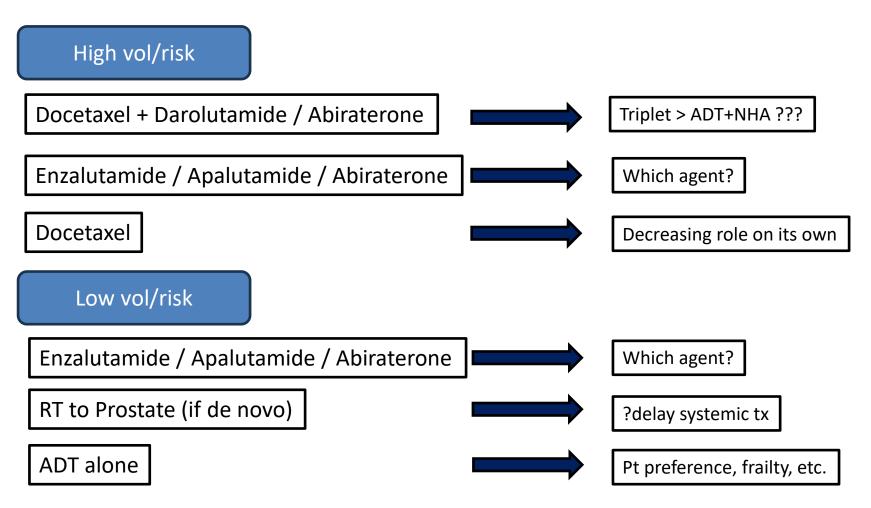
Schoen et al. JAMA Net Open (2024)



Take Home #1: Prostate Cancer is common with stable incidence. Outcomes are improving.

Metastatic Prostate Cancer: The Basics

Summary: mCSPC RCT's


Trial (Year)	Intervention (ADT+)	Control	Patient population	mOS (mo)	HR (P value)
CHAARTED (2018)	Docetaxel	ADT	"High volume"	51.2 v. 34.4	0.63 (<0.001)
LATITUDE (2019)	Abi/Pred	ADT	"High risk"	53.3 v. 36.5	0.66 (<0.001)
TITAN (2021)	Apalutamide	ADT	≥1 bone met	NR v. 52.2 4yr: 65 vs. 52%	0.65 (<0.001)
ARCHES (2022)	Enzalutamide	ADT	Any met dz	NR v. NR 4yr: 71 v. 57%	0.66 (<0.001)
PEACE-1 (2022)	Abi/pred + Docetaxel	ADT + docetaxel	<i>De novo</i> met dz	NR v. 53.2 'high volume': 61.7 v. 41.6	0.75 (0.02)
ARASENS (2022)	Darolutamide + Docetaxel	ADT + docetaxel	Met Dz <i>De novo</i> = 86%	NR v. 48.9 4yr: 63 vs 50%	0.68 (<0.001)

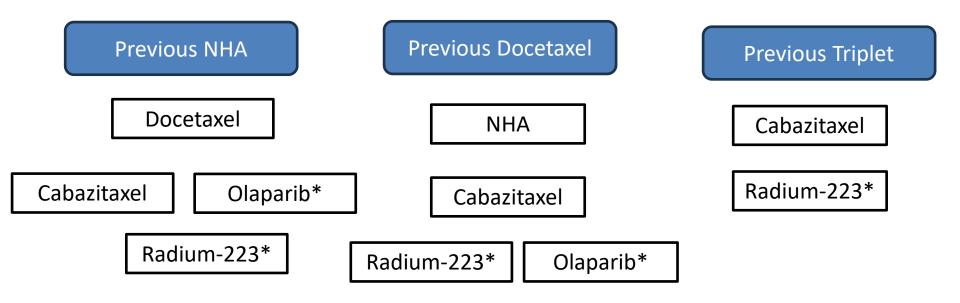
High risk (2+ of): Gleason 8+, 3+ bone mets, visceral mets **High volume**: visceral mets or 4+ bone mets, 1 outside spine/pelvis

ADT PLUS...Analysis Paralysis in mCSPC

Summary: mCRPC RCT's

Trial (Year)	Intervention (ADT+)	Control	Patient population	mOS (mo)	HR (P value)
TAX327 (2004)	Docetaxel	Mitoxantrone	1L	18.9 v. 16.5	0.76 (<0.01)
COU-AA-302 (2015) COU-AA-301 (2012)	Abi/Pred	Pred	No prior docetaxel Prior docetaxel	34.7 v. 30.3 15.8 v. 11.2	0.81 (<0.01) 0.74(<0.001)
PREVAIL (2020) AFFIRM (2012)	Enzalutamide	Placebo	No prior docetaxel Prior docetaxel	36 v. 31 18.4 v. 13.6	0.83 (<0.001) 0.63 (<0.001)
CARD (2019)	Cabazitaxel	Alternative NHA	Prior NHA + Docetaxel	13.6 v. 11.0	0.64 (<0.01)

Summary: mCRPC RCT's


Trial (Year)	Intervention (ADT+)	Control	Patient population	mOS (mo)	HR (P value)
ALSYMPCA (2013)	Radium 223	Placebo	2+ bone mets, +/- prev docetaxel	14.9 vs. 11.3	0.70 (<0.01)
PROFOUND (2020)	Olaparib	Alternative NHA	BRCA 1/2, ATM mut. Prior NHA	19.1 vs. 14.7	0.69 (0.02)
VISION (2021)	Lutetium 177 PSMA*	Invest. Choice	PSMA+, previous NHA, taxane	15.3 vs. 11.3	0.62 (<0.001)

*Pending Availability in MB

mCRPC: Unclear post mCSPC

THE OPTIMAL SEQUENCE IS UNKNOWN!

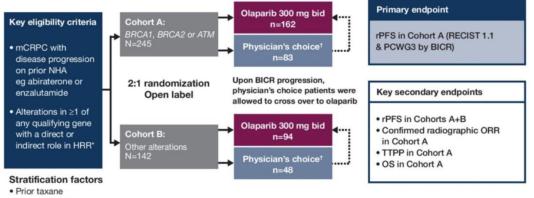
Take Home #2:

ADT, NHA and chemotherapy are the backbones of treatment for Stage IV Prostate CA. Optimal sequences unknown.

Interlude: Barriers to Change

Despite progress, most trials provide "options" without definitively advancing best practice

RCT must have:


- Endpoints that matter (OS, QOL)
- Control arms that you would give to your loved one
- Adequate post-protocol therapy (i.e. do they get standard of care after the study?)

Ex: Olaparib in mCRPC

Figure 1. PROfound study design

Measurable disease

*BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L; *Either enzalutamide (160 mg qd) or abiraterone (1000 mg qd plus prednisone [5 mg bid]). BICR, blinded independent central review; ORR, objective response rate; OS, overall survival; qd, once daily; TTPP, time to pain progression

- A) Endpoints that matter (OS, QOL): Mostly! OS for Cohort A as secondary endpoint
- B) Control arms that you would give to your loved one: No. Alternative NHA in pt already receiving. 30% no prior docetaxel. ~80% no prior cabazitaxel.
- C) Adequate post-protocol therapy (i.e. do they get standard of care after the study?) No. 25% received nothing further. ~70% of those who did received Olaparib. Very few receiving taxane chemotherapy (standard of care)

Would this ~4 month OS benefit exist if the trial was run differently?

What endpoints truly matter?

1) Overall Survival: "Will I live longer?"

- Primary endpoint in <30% of cancer trials in major oncology journals from 2010-2020 (versus ~50% in 1994-2004) Del Paggio et al. JAMA Onc (2021)
- Instead, 'surrogate' endpoints: response rate, progression-free survival, etc. These are not strongly correlated with OS in most disease settings, but may be evidence of PFS in mCSPC *Halabi et al. JCO (2024)*
- OS benefit demonstrated in only ~50% of cancer drugs recommended for reimbursement w/ in Canadian framework median gains ~3.5mo *Meyers et al. JAMA IM (2021)*

2) Quality of Life: "Will I live better?"

- Not included as endpoint, or absent from published results in 50+% of Phase III trials in prostate cancer *Marandino et al. Clin Gen Cancer (2019)*
- Only ~3% of cancer trials capture QOL until the end of the patient's life *Haslam et al. JAMA Net Open* (2020)
- Most common primary endpoint (PFS) has a weak association with global QOL, or any specific domain within QOL *Hwang et al. Int J. Cancer (2018)*

Take Home #3:

Despite our progress, many clinical trials have fundamental flaws that make interpretation/application to patients difficult.

Key Toxicities - ADT

- ↓ libido/sexual dysfunction
 Gynecomastia
 Hot flashes
- Weight gain
- Metabolic syndrome
- Mood change
- Bone Loss

Tx / Monitoring: A1C, Lipids and BP q6-12 mo BMD q1-3 years → Tx w/ bisphosphonates per guidelines for OP Daily Vit D, Calcium

SNRI / SSRI / Gabapentin for vasomotor symptoms

NCCN guidelines. Version 4.2019, 9/5/19. <u>www.nccn.org</u> Kokorovic et al Can Urol Assoc J (2021)

Key Toxicities - NHA

<u>Abiraterone</u>	<u>Enzalutamide</u>	<u>Apalutamide</u>	<u>Darolutamide</u>
HTN	HTN	HTN	HTN
Edema	Fatigue	Rash	Cardiac Isch.
Liver injury	Cognitive Imp.	Fatigue	Fatigue
Hypokalemia	?Seizure (<1%)	HypoThyroid	CHF
Cardiac Isch.	QT	QT	Liver injury

+pred side effects

****ALWAYS CHECK DRUG INTERACTIONS****

CancerCare Ontario Drug Formulary (2024)

Key Toxicities – Chemotherapy

	Docetaxel (%)	Cabazitaxel (%)
Any AE (Gr3+)	97 (46)	96 (60)
AE Leading to d/c	15	20
Diarrhea (Gr3+)	37 (2)	50 (6)
Nausea (Gr3+)	32 (1)	23 (1)
Hematuria (Gr3+)	4 (0)	25 (4)
Neuropathy (Gr3+)	25 (2)	12 (0)
Feb Neut (Gr 3+)	8 (8)	12 (12)

Oudard et al. JCO (2017)

Take Home #4: All systemic therapies for prostate cancer have potential toxicity to be considered w/ patient context and preferences.

Take home messages

- 1. Prostate Cancer is common with stable incidence. Outcomes are improving.
- 2. ADT, NHA and chemotherapy are the backbones of treatment for Stage IV Prostate CA. Optimal sequences unknown.
- Despite our progress, many clinical trials have fundamental flaws that make interpretation/application to patients difficult.
- 4. All systemic therapies for prostate cancer have potential toxicity to be considered w/ patient context and preferences

References

Canadian Cancer Statistics Advisory Committee in collaboration with the Canadian Cancer Society, Statistics Canada and the Public Health Agency of Canada. Canadian Cancer Statistics 2023. Toronto, ON: Canadian Cancer Society; 2023.

Schoen et al. Survival in patients with de novo metastatic prostate cancer. JAMA Network Open. March 2024. doi:10.1001/jamanetworkopen.2024.1970

Del Paggio et al. Evolution of the randomized clinical trial in the era of precision oncology. JAMA Oncology. May 2021. doi: 10.1001/jamaoncol.2021.0379

Halabi et al. Radiographic Progression-Free Survival and Clinical Progression-Free Survival as Potential Surrogates for Overall Survival in Men With Metastatic Hormone-Sensitive Prostate Cancer. JCO. January 2024. doi.org/10.1200/JCO.23.01535

Meyers et al. Evaluation of the clinical benefit of cancer drugs submitted for reimbursement recommendation decisions in Canada. JAMA Internal Med. February 2021. doi:10.1001/jamainternmed.2020.8588

Marandino et al. Quality of life assessment and reporting in prostate cancer: systemic review of phase three trials testing anticancer drugs published beteen 2012 and 2018. Clin Genitourinary Cancer. October 2019. doi: 10.1016/j.clgc.2019.07.007.

Haslam et al. Patient experience captured by quality of life measurement in oncology clinical trials. JAMA Network Open. March 2020. doi:10.1001/jamanetworkopen.2020.0363

Hwang et al. Association between progression-free survival and patients quality of life in cancer clinical trials. Int J Cancer. October 2018. doi.10.1002/ijc.31957

Kokorovic et al. Canadian urological association guideline on androgen deprivation therapy: Adverse events and management strategies. Can Urol Assoc J. June 2021. doi: 10.5489/cuaj.7355

Oudard et al. Cabazitaxel versus docetaxel as first-line therapy for patients with metastatic castration-resistant prostate cancer: A randomized phase III trial – FIRSTANA.

