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KEY POINTS

e Ischemia is a common denominator in chronic ulcers. The result of ischemia is tissue
injury, necrosis, and the development of open wounds that are quickly colonized by
bacteria.

e The infection sets the stage for chronic and uncontrolled inflammation. As the host’s in-
flammatory cells try to remove the damaged tissue, reactive oxygen species and prote-
ases are released, causing further tissue damage.

e The proinflammatory response is perpetuated by the formation of a biofilm that walls off
and protects the bacteria and the inflamed ulcer site.

e Because of the raging inflammatory environment, residual connective tissue cells have
decreased mitogenic activity and become senescent.

e This vicious cycle of inflammation and tissue destruction persists until aggressive clinical
strategies are used to remove bacteria, damaged and necrotic tissue and reduce
inflammation.

INTRODUCTION

The wound healing process consists of a carefully coordinated sequence of events
after a cutaneous injury leading to regeneration of the skin protective barrier." After
an initial insult, wounds that fail to progress through the stages of wound healing
within a 3-month period of time are deemed chronic wounds.? Chronic wounds
are characterized by a prolonged and sustained inflammatory phase that prevents
dermal and epidermal cells from responding to chemical signals.> Most chronic
wounds begin with small tissue insults, including minor trauma or skin tears and in-
sect bites. In the setting of comorbidities including diabetes and arterial insufficiency
that inhibit blood flow, these wound often evolve into chronic nonhealing wounds.
With the increasing elderly population combined with increased worldwide risk of
diabetes, chronic wounds represent a significant contributor to health care costs
and morbidity.
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TYPES OF CHRONIC WOUNDS

Chronic wounds are classified into vascular ulcers (venous and arterial), diabetic ul-
cers, and pressure ulcers, all of which have different causes but can lead to nonhealing
wounds. Most chronic wounds fail to progress beyond the inflammatory phase of
wound healing and are often impacted by the presence of infection* drug-resistant
biofilms (see Steven R. Evelhoch’s article, “Biofilm and Chronic Non-Healing Wound
Infections,” in this issue),® and a loss of response to chemotactic stimuli® that preclude
them from healing. Although there are similarities among these nonhealing wounds,
they differ in terms of the mechanism underlying their inability to heal.”

Vascular Ulcers

Vascular ulcers can arise from either venous or arterial insufficiency. Venous ulcers are
preceded by symptoms of heaviness and pain in the legs and often associated with
swelling, varicose veins, and areas of hyperpigmentation owing to hemosiderin, a
breakdown product of hemoglobin. Lipodermatosclerosis, an inflammation of the
layer of fat under the epidermis of the limb, occurs when skin and subcutaneous tissue
are replaced by fibrinous scar before ulcer formation. Venous ulcers then occur when
incompetent valves or obstruction in the superficial and deep veins result in a backflow
of blood, leading to increased venous pressure, changes in blood vessel permeability
with fibrin, plasma, and red blood cell leakage into the interstitial space. These entities
serve as chemoattractants for leukocytes infiltration into the area.® Fibrin accumula-
tion downregulates collagen synthesis and accumulates in the form of pericapillary
fibrin cuffs.® There are 3 main theories regarding the development of ulcers in venous
insufficiency.® The fibrin cuff theory supports the trapping of various factors that stim-
ulate prolonged inflammation and interfere with oxygen tissue diffusion, further
impacting the normal wound healing cascade. The leukocyte entrapment theory sug-
gests that venous hypertension leads to a decrease in the pressure gradient in the
capillaries such that blood moves sluggishly and increases the adherence of blood
cells to the endothelium resulting in the release of inflammatory mediators such as tu-
mor necrosis factor « (TNFe) that upregulates the adhesion molecules, intercellular
adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species
causing ischemia and ulceration.'® Last, the microangiopathy theory suggests there is
occlusion of capillaries by microthrombi leading to poor oxygenation. These associ-
ated venous skin changes predispose patients to developing venous stasis ulcers in
the setting of minor trauma.

Arterial ulcers result from arterial insufficiency from atherosclerosis that prevents
adequate blood flow perfusion leading to tissue ischemia and necrosis.’"'? These ul-
cers may be associated with advanced age, smoking, diabetes mellitus, hypertension,
dyslipidemia, family history, obesity, and a sedentary lifestyle. There are multiple the-
ories regarding the pathogenesis of ischemic leg ulcers, but all coalesce into
decreased tissue oxygenation secondary to poor blood flow.

Pressure Ulcers

Pressure ulcers occur from tissue ischemia from sustained direct pressure and
shearing forces applied to skin. These ulcers are most common in patients with
poor mobility and neuropathies, although they can be worsened by a patient with
concomitant venous or arterial insufficiency.

Although friction and shear stress cause direct epidermal and dermal skin changes
and subepidermal breaks in skin, the mechanical load causes changes in interstitial
fluid content, ultimately leading to tissue necrosis. There is a significant upregulation
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of inflammatory markers in the adipose tissue in response to reperfusion injury related
hypoxia and reoxygenation, suggesting that the adipocytes may drive this inflamma-
tory response. Pressure ulcers are characterized by an excessive density of
neutrophils.'®

Diabetic Ulcers

Diabetic ulcers occur in the setting of peripheral neuropathy in which patients are un-
able to recognize repeated minor trauma to the legs. The mechanism underlying the
pathogenesis of diabetic ulcers includes elevated glucose levels causing increased
levels of reactive oxygen species, nitric oxide blockade, DNA alternation, elevation
protein kinase C, ischemia, and inflammation.'* Peripheral arterial disease further con-
tributes to disease pathogenesis owing to decreased capillary size, thickening of the
basement membrane, and arteriolar hyalinosis.’® Persistent hyperglycemia also
causes endothelial dysfunction and smooth muscle abnormalities, with resulting vaso-
constriction'® The chronicity and poor wound healing associated with diabetic ulcers
is multifactorial and includes abnormalities in growth factor production, angiogenesis,
cell migration and proliferation, collagen deposition, and extracellular matrix remodel-
ing by proteases.’’°

NORMAL WOUND HEALING

The process of normal wound healing consists of 4 key phases in which cells and an
extracellular matrix provide a framework for collagen growth and deposition.” The 4
phases of wound healing include hemostasis, inflammation, proliferation, and remod-
eling (Fig. 1) and relies on chemical mediators including growth factors, chemokines,
and inhibitors. In the hemostasis phase, the process begins with vasoconstriction fol-
lowed by platelet activation by collagen binding to an extracellular matrix. The plate-
lets release chemical factors, including fibronectin, thrombospondin, sphingosine-1-
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Fig. 1. Phases of normal wound healing. Cellular and molecular events during normal
wound healing progress through 4 major, integrated, phases: hemostasis, inflammation,
proliferation, and remodeling. (From Cohen IK, Diegelmann RF, Linblad WJ. Wound Healing:
Biochemical & Clinical Aspects. Philadelphia, PA: W.B. Saunders Co.; 1992; with permission.)
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phosphate, and von Willebrand’s factor, which aid in ongoing control of bleeding in the
wound.?%22 |nsoluble fibrin forms a provisional matrix to which platelets adhere and
form a plug or clotlike structure?® (Fig. 2).

Wounds then progress within 24 hours after injury to the next phase of wound heal-
ing called the inflammatory phase lasting until postinjury day 4. This phase is charac-
terized by cell-mediated removal of bacteria and devitalized tissue through the
migration of neutrophils and macrophages to allow for subsequent collagen deposi-
tion by fibroblasts and neovascularization®* (Fig. 3). Neutrophils bind to specialized
cell adhesion molecules on endothelial cells to then marginate and squeeze through
leaky cell junctions into the interstitial space through a process of pavementing and
diapedesis. Neutrophil migration is termed chemotaxis and is mediated by both che-
mokines and bacterial presence within a wound. Neutrophils generate reactive oxygen
species via the enzyme myeloperoxidase, phagocytize foreign debris, and release ma-
trix metalloproteinases (MMPs), which further digest surrounding necrotic tissue. Acti-
vated macrophages also function as phagocytic cells and release proteases to further
digest injured tissues.

The transition to the next phase of wound healing occurs when neutrophils release
IL-1 and TNFa to activate fibroblasts and epithelial cells and macrophages release
multiple growth factors including platelet-derived growth factor, transforming growth
factor-B, TNFa, fibroblast growth factor, insulin-like growth factor-1, and IL-6. The crit-
ical phase of wound healing, called the proliferative phase, occurs between postinjury
days 4 and 21 and heavily relies on fibroblast proliferation and migration. This phase is
characterized by collagen synthesis, deposition and cross-linking, and formation of a
reconstituted extracellular matrix by the addition of proteoglycans (Fig. 4). Open
wounds begin to contract through specialized cells called myofibroblasts.?® The pres-
ence of MMPs from inflammatory cells and fibroblasts allows for ongoing collagen
remodeling but they are regulated by specific inhibitors, called tissue inhibitors of
MMPs. The net result is that there is more collagen deposition than destruction.?%:2”
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Fig. 2. Hemostasis phase. At the time of injury, the fibrin clot forms the provisional wound
matrix and platelets release multiple growth factors that initiate the repair process. (From
Chandawarkar R, Miller MJ. Wound Healing. In: Mulholland MW, Lillemoe KD, Doherty
GM et al. Greenfield's Surgery: Scientific Principles & Practice. 6th ed. Philadelphia, PA: J.
B. Lippincott & Co.; 1993; with permission.)
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Fig. 3. Inflammatory phase. Within 1 day after an injury, the inflammatory phase is initiated
by neutrophils that attach to endothelial cells in the vessel walls surrounding the wound
(margination), change shape and move through the cell junctions (diapedesis), and migrate
to the wound site (chemotaxis). (From Chandawarkar R, Miller MJ. Wound Healing. In: Mul-
holland MW, Lillemoe KD, Doherty GM et al. Greenfield’s Surgery: Scientific Principles &
Practice. 6th ed. Philadelphia, PA: J. B. Lippincott & Co.; 1993; with permission.)

The last phase of wound healing is called the remodeling phase, goes on for years,
and occurs once all extracellular matrix components have been deposited in the
wound site (Fig. 5). The final wound appears as a scar with approximately 80% of
the original tensile strength of normal tissue. In this phase, the initial type Ill collagen
that was deposited, is replaced by type 1 collagen and cross-linked.?®

Fibroblast

Wound
macrophage

Fig. 4. Proliferation phase. Fixed tissue monocytes activate, move into the site of injury,
transform into activated wound macrophages that kill bacteria, release proteases that re-
move denatured extracellular matrix, and secrete growth factors that stimulate fibroblast,
epidermal cells, and endothelial cells to proliferate and produce scar tissue. (From Chanda-
warkar R, Miller MJ. Wound Healing. In: Mulholland MW, Lillemoe KD, Doherty GM et al.
Greenfield’s Surgery: Scientific Principles & Practice. 6th ed. Philadelphia, PA: J. B. Lippincott
& Co.; 1993; with permission.)
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CHRONIC WOUND HEALING

Chronic wounds fail to progress through the organized phases of wound healing in a
timely manner.? Although they differ in etiology, chronic wounds are typically charac-
terized by excessive levels of proinflammatory cytokines, proteases, reactive oxygen
species, senescent cells, bioburen, and a deficiency of functional stem cells.?®

Inflammation: Bacteria and Biofilms in Chronic Wounds

Bacteria have the ability to both colonize and infect wounds, causing major problems
in the chronic wound setting. Most chronic wounds are polymicrobial in nature with a
preponderance of Staphylococcus and Pseudomonas species.*° Anaerobic bacteria
are found in a relative abundance in chronic wounds, which are continually exposed
to high levels of oxygen.®' Interestingly, there is a paucity of Corynebacterium, a
commensal bacteria, in these wounds. Commensal bacteria have long been shown
to benefit the host organism by educating the host adaptive response and inhibiting
the growth of pathogenic bacteria®?> (recent data have shown coryneform bacteria
to be pathogenic in wounds). The polymicrobial nature of wound allows for microbial
diversity and heterogeneity with in a wound, further challenging the wound’s ability
to heal.

To strengthen their antimicrobial resistance, planktonic bacteria evolved to create
biofilms. Biofilms are formed when bacterial cells attach to a surface and use
quorum-sensing molecules to induce changes in gene expression, which ultimately
creates a barrier consisting of predominately exopolymers, with some residual bacte-
rial cells. The biofilm consists of 856% exopolymers, including polysaccharides, pro-
teins, and nucleic acids, combined with 15% bacteria and form the mature biofilm.
Biofilms are consistently polymicrobial with planktonic cells leaving the area to find
additional areas to colonize. Steven R. Evelhoch’s article, “Biofiim and Chronic
Non-Healing Wound Infections,” in this issue focuses on role of biofiims in wound
healing.
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Fig. 5. Remodeling phase. The initial, disorganized scar tissue is slowly replaced by a matrix
that more closely resembles the organized extracellular matrix of normal skin. (From Chan-
dawarkar R, Miller MJ. Wound Healing. In: Mulholland MW, Lillemoe KD, Doherty GM et al.
Greenfield’s Surgery: Scientific Principles & Practice. 6th ed. Philadelphia, PA: J. B. Lippincott
& Co.; 1993; with permission.)
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Biofilms stimulate the host immune response

Biofilms have been shown to be even more recalcitrant than bacteria to the host im-
mune response, making them an even greater challenge for chronic wounds than bac-
teria alone. Leukocytes within the wound have difficulty penetrating and maneuvering
through the biofilm and have an impaired ability to produce reactive oxygen species.>*
This property also prevents phagocytosis of bacteria through normal wound healing
pathways. The structural exopolymer of the biofilm has been suggested to evade as-
pects of the host inflammatory response by further blocking complement activation,
suppressing the lymphoproliferative response, and impairing the ability of opsonins
on bacterial walls to be detected by phagocytes. There seems to be heterogeneity
in biofilms, likely depending on the specific pathogenic micro-organisms.

Biofilms directly resist antimicrobial therapy

By creating and incorporating into biofilms, bacterial cells create an environment
where they have decreased metabolic activity, thus rendering themselves less effec-
tive against antimicrobial agents that target metabolically active cells.>> An additional
mechanism of resistance is that the exopolysaccharide in the biofilm functions as a
mechanical barrier to protect bacteria from antimicrobials and the host immune
cells.®® Biofilms allow for the transfer of plasmid-mediated antimicrobial resistance
genes among bacteria within a biofilm that not only adds to the heterogeneity of the
wound, but also provides added resistance. Some biofilms are thought to have con-
centration gradients to minimize the impact of antibiotics and antiseptics, whereas
some biofilms may be eradicated after antimicrobial therapy only to have persister
cells stimulate regrowth of biofilm once these agents have been removed. Biofiims
may possess an additional evolutionary response to antimicrobial therapy by devel-
oping thicker mucoid-like phenotypes in response to some antimicrobial therapies.

Biofilms stimulate chronic inflammation

Biofilms are present in nearly 60% of chronic wound but only 10% of acute wounds,
and notably stimulate chronic inflammation in the chronic setting. Stimulation of the
immune system when unable to effectively eradicate infection can lead to worsening
of chronic inflammation and perpetuate the cycle of the chronic wound. This phenom-
enon occurs through gene expression, which induces inflammation to promote
plasma leakage from local capillaries for nutrition.®” Additionally, biofilms contribute
to wound bed senescence cause by oxidative stress and protease-mediated degra-
dation of receptors and cytokines. This leads to alterations in host cell cytoskeleton,
inhibition of mitosis, and apoptosis.

PROTEASES

Wounds produce MMPs, calcium-dependent zinc-containing enzymes, that, together
with their inhibitors, play key role in the regulation of extracellular matrix deposition
and degradation.®® MMPs can be divided into 7 groups based on the substrate pref-
erence and domain organization: (1) collagenases, (2) gelatinases, (3) stromelysins, (4)
matrilysins, (5) metalloelastases, (6) membrane-type MMPs, and (7) other MMPs.
Overexpression of MMPs causes damage to the extracellular matrix and drives the
underlying pathology of chronic, nonhealing wounds. Overproduction of MMPs also de-
stroys vital growth factors such as platelet-derived growth factor and transforming
growth factor-B necessary for wound healing. This overproduction results in an unreg-
ulated, continuous inflammatory phase for chronic nonhealing wounds. In normal tissue,
there are very low levels of MMPs. In injured tissue, fibroblasts, keratinocytes, endothe-
lial, and inflammatory cells secrete MMPs in response to cytokines, hormones, and
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other cell types in the extracellular matrix. Cytokines and growth factors known to tran-
scriptionally activate MMPs include transforming growth factor-3, vascular endothelial
growth factor, epidermal growth factor, interleukins and interferons, all of which are
important in wound healing.*® Overexpression of MMP-1 delays re-epithelization and
is known to be elevated in chronic wounds associated with diabetic foot ulcers.'%4°

Neutrophil-derived MMP-8 has been associated with chronic wounds.*' Circulating
neutrophils respond to a site of injury and secrete proinflammatory mediators to recruit
other inflammatory cells. Neutrophils subsequently undergo apoptosis with phagocy-
tosis by macrophages, which ends the inflammatory phase of wound healing in normal
wounds. However, in chronic wounds, neutrophils continue to recruit additional inflam-
matory cells to the wound bed, leading to ongoing inflammation. Extracellular release of
reactive oxygen species and proteases also cause ongoing tissue damage, which
further impairs wound healing through defective collagen deposition, decreased wound
strength, and delayed re-epithelialization. Protease function is also regulated by multiple
protease inhibitors stored in neutrophils. a1-Antitrypsin has been shown to be degraded
in chronic wounds, which is thought to contribute to excess serine protease activity in
chronic wounds. Fibronectin degradation in chronic wounds depends on the relative
levels of elastase, a-1-proteinase inhibitor, and «-2-macroglobulin.*>43

PROINFLAMMATORY MEDIATORS (IL-8, IL-6, AND TUMOR NECROSIS FACTOR-«)

Although there are a number of proinflammatory mediators and factors responsible for
the chronicity and prolonged inflammation in chronic ulcers, there are several that are
major players.” IL-8 is a well-known chemoattractant and activator of neutrophils and
has a prominent role in chronic ulcers.** One of the hallmarks of inflammation is the
excessive presence of neutrophils that release several damaging proteases such as
MMP 8 and elastase.® IL-6 is an interesting and a multifunctional cytokine that elicits
a spectrum of responses.“® It is a potent proinflammatory signal and contributes to the
chronicity of chronic ulcers.*®*” TNFa. is another well-known proinflammatory cyto-
kine that has been shown to cause tissue damage in sites of infection.*® As with IL-
6 and IL-8, TNFa also has a critical role in the chronicity of nonhealing ulcers.*®

TREATMENT OF CHRONIC WOUNDS: HOW TO BREAK THE INFLAMMATORY CYCLE
Debridement, Infection/Inflammation, Moisture Management, Edge/Environment,
Support Products and Services: A Holistic Approach to the Management of Chronic
Wounds

The debridement, infection/inflammation, moisture management, edge/environment,
support products and services wound care guideline was developed as an overall
approach to managing patient’s wounds and addressing underlying comorbidities.>°
The infection/inflammation, moisture management, edge/environment, support prod-
ucts and services process consists of a comprehensive approach to wound bed prep-
aration, control of infection and inflammation, and maintaining an appropriate
moisture balance within the wound (Fig. 6).

Specifically, wounds are assessed for the presence of devitalized, infected, and/or
inflamed tissue that may inhibit the wound healing process. Ongoing within the chronic
wounds are then addressed by physical examination for heat, pain, redness, and
swelling. Pain is a reliable marker of infection. Debridement of this devitalized tissue
removes areas with high bacterial loads, biofilm, and helps to reinvigorate the wound
healing process in tissue with a higher oxygen tension.

Removal of this tissue also removes the bacteria, proteases, inflammatory media-
tors, and hyperproliferative wound edges that stall a wound in a prolonged



What Makes Wounds Chronic

————— Molst Wound Healing JIEEEEEE 0

b d

b= == Morst Wound Healing MRS _ SN 1015t Wound Healing MR, )

Fig. 6. Schematic of devitalized tissue, infection/inflammation, moisture balance, and edge
preparation wound treatment strategy. NPWT, negative pressure wound therapy; ORC,
oxidized regenerated cellulose. (From Snyder RJ, Fife C, Moore Z. Components and Quality
Measures of DIME (Devitalized Tissue, Infection/Inflammation, Moisture Balance, and Edge
Preparation) in Wound Care. Adv Skin Wound Care. 2016;29(5):205-215; with permission.)

inflammatory phase. Removal of chronic hyper granulation tissue is necessary; it has
been shown to decrease the amount of antibiotics that can reach a wound infection
and prolong the wound healing process. Wound debridement can be in the form of
sharp debridement, mechanical debridement with negative pressure wound therapy
with instillation and dwell time, or autolytic debridement through hydrogels and hydro-
colloid dressings, depending on the extent of devitalized tissue burden. The presence
of inflammation is addressed by looking for underlying causes including malignancy,
vasculitis, vasculopathy, and pathergy in the form of pyoderma gangrenosum and bi-
opsy when necessary. Collagen matrix dressings may be used to facilitate a decrease
in wound inflammation. Maintaining wound moisture balance is also an important
aspect of chronic wound healing. The wound bed is assessed through an evaluation
of the quality, odor, and consistency of drainage both within the wound and the sur-
rounding periwound tissue. A moist environment is necessary to promote growth fac-
tors, cytokines, and chemokine function in a wound. Too much moisture, however,
can lead to periwound maceration and stall the wound care process within the wound
bed. A dry wound bed, resulting from exposure of the wound to air, leads to desicca-
tion and necrosis and perpetuates the cycle of poor wound healing.

ADJUNCTIVE THERAPIES

Many adjunctive wound care therapies have been developed to facilitate the healing of
chronic wounds. Topical antibiotics may be used to minimize bacterial infection with
bacterial threshold of 10°. Silver- and iodine-impregnated dressings may also be used
to control bacterial load on an ongoing basis. Moist occlusive dressings help to create
an environment with low oxygen tension and facilitate re-epithelization through activa-
tion of hypoxia-inducible factor 1.5’

Negative pressure wound therapy has been widely used to facilitate chronic wound
healing by 4 primary mechanisms (macrodeformation, microdeformation, fluid
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Healing Wounds:
LOW INFLAMMATORY CYTOKINES
LOW PROTEASES, ROS
INTACT FUNCTIONAL MATRIX
HIGH MITOGENIC ACTIVITY
MITOTICALLY COMPETENT CELLS

Chronic Wounds:
HIGH INFLAMMATORY CYTOKINES
HIGH PROTEASES, ROS
DEGRADED NONFUNCTIONAL MATRIX
LOW MITOGENIC ACTIVITY
SENESCENT CELLS

Fig. 7. Comparison of the molecular and cellular environments of normal healing compared
with chronic wounds. Elevated levels of cytokines and proteases in chronic wounds reduce
mitogenic activities and response of wound cells thus impairing healing. ROS, reactive oxy-
gen species. (From Schultz GS, Chin GA, Moldawer L, et al. Principles of Wound Healing. In:
Fitridge R, Thompson M, eds. Mechanims of Vascular Disease: A Reference Book for
Vascular Specialists [Internet]. Adelaide, Australia: University of Adelaide Press; 2011; with
permission.)

removal, and alteration of the wound environment) and various secondary mecha-
nisms (including neurogenesis, angiogenesis, modulation of inflammation, and alter-
ations in bioburden).5%:%3

SUMMARY

Fig. 7 summarizes this article by showing the comparison of the molecular and cellular
environments of normal healing compared with chronic wounds. Increased levels of
cytokines and proteases in chronic wounds decrease mitogenic activities and the
response of wound cells, thus impairing healing.>*
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